A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus

  1. Jessica K Cinkornpumin
  2. Dona R Wisidagama
  3. Veronika Rapoport
  4. James L Go
  5. Christoph Dieterich
  6. Xiaoyue Wang
  7. Ralf J Sommer
  8. Ray L Hong  Is a corresponding author
  1. California State University, Northridge, United States
  2. University of Utah, United States
  3. Max Planck Institute for Biology of Ageing, Germany
  4. Max-Planck Institute for Developmental Biology, Germany

Abstract

Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulate insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction toward the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggests that the beetle host pheromone may be a species-specific volatile synomone that coevolved with necromeny.

Article and author information

Author details

  1. Jessica K Cinkornpumin

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dona R Wisidagama

    University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Veronika Rapoport

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James L Go

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christoph Dieterich

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoyue Wang

    Max-Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ralf J Sommer

    Max-Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ray L Hong

    California State University, Northridge, Northridge, United States
    For correspondence
    ray.hong@csun.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Cinkornpumin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,120
    views
  • 189
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica K Cinkornpumin
  2. Dona R Wisidagama
  3. Veronika Rapoport
  4. James L Go
  5. Christoph Dieterich
  6. Xiaoyue Wang
  7. Ralf J Sommer
  8. Ray L Hong
(2014)
A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus
eLife 3:e03229.
https://doi.org/10.7554/eLife.03229

Share this article

https://doi.org/10.7554/eLife.03229

Further reading

  1. A beetle pheromone that lures nematode worms to an insect host can also stop their development or even kill them outright.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Leif Benner, Savannah Muron ... Brian Oliver
    Research Article

    Differentiation of female germline stem cells into a mature oocyte includes the expression of RNAs and proteins that drive early embryonic development in Drosophila. We have little insight into what activates the expression of these maternal factors. One candidate is the zinc-finger protein OVO. OVO is required for female germline viability and has been shown to positively regulate its own expression, as well as a downstream target, ovarian tumor, by binding to the transcriptional start site (TSS). To find additional OVO targets in the female germline and further elucidate OVO’s role in oocyte development, we performed ChIP-seq to determine genome-wide OVO occupancy, as well as RNA-seq comparing hypomorphic and wild type rescue ovo alleles. OVO preferentially binds in close proximity to target TSSs genome-wide, is associated with open chromatin, transcriptionally active histone marks, and OVO-dependent expression. Motif enrichment analysis on OVO ChIP peaks identified a 5’-TAACNGT-3’ OVO DNA binding motif spatially enriched near TSSs. However, the OVO DNA binding motif does not exhibit precise motif spacing relative to the TSS characteristic of RNA polymerase II complex binding core promoter elements. Integrated genomics analysis showed that 525 genes that are bound and increase in expression downstream of OVO are known to be essential maternally expressed genes. These include genes involved in anterior/posterior/germ plasm specification (bcd, exu, swa, osk, nos, aub, pgc, gcl), egg activation (png, plu, gnu, wisp, C(3)g, mtrm), translational regulation (cup, orb, bru1, me31B), and vitelline membrane formation (fs(1)N, fs(1)M3, clos). This suggests that OVO is a master transcriptional regulator of oocyte development and is responsible for the expression of structural components of the egg as well as maternally provided RNAs that are required for early embryonic development.