A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus

  1. Jessica K Cinkornpumin
  2. Dona R Wisidagama
  3. Veronika Rapoport
  4. James L Go
  5. Christoph Dieterich
  6. Xiaoyue Wang
  7. Ralf J Sommer
  8. Ray L Hong  Is a corresponding author
  1. California State University, Northridge, United States
  2. University of Utah, United States
  3. Max Planck Institute for Biology of Ageing, Germany
  4. Max-Planck Institute for Developmental Biology, Germany

Abstract

Nematodes and insects are the two most speciose animal phyla and nematode-insect associations encompass widespread biological interactions. To dissect the chemical signals and the genes mediating this association, we investigated the effect of an oriental beetle sex pheromone on the development and behavior of the nematode Pristionchus pacificus. We found that while the beetle pheromone is attractive to P. pacificus adults, the pheromone arrests embryo development, paralyzes J2 larva, and inhibits exit of dauer larvae. To uncover the mechanism that regulate insect pheromone sensitivity, a newly identified mutant, Ppa-obi-1, is used to reveal the molecular links between altered attraction toward the beetle pheromone, as well as hypersensitivity to its paralyzing effects. Ppa-obi-1 encodes lipid-binding domains and reaches its highest expression in various cell types, including the amphid neuron sheath and excretory cells. Our data suggests that the beetle host pheromone may be a species-specific volatile synomone that coevolved with necromeny.

Article and author information

Author details

  1. Jessica K Cinkornpumin

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dona R Wisidagama

    University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Veronika Rapoport

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James L Go

    California State University, Northridge, Northridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christoph Dieterich

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Xiaoyue Wang

    Max-Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ralf J Sommer

    Max-Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ray L Hong

    California State University, Northridge, Northridge, United States
    For correspondence
    ray.hong@csun.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Cinkornpumin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,132
    views
  • 190
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica K Cinkornpumin
  2. Dona R Wisidagama
  3. Veronika Rapoport
  4. James L Go
  5. Christoph Dieterich
  6. Xiaoyue Wang
  7. Ralf J Sommer
  8. Ray L Hong
(2014)
A host beetle pheromone regulates development and behavior in the nematode Pristionchus pacificus
eLife 3:e03229.
https://doi.org/10.7554/eLife.03229

Share this article

https://doi.org/10.7554/eLife.03229

Further reading

  1. A beetle pheromone that lures nematode worms to an insect host can also stop their development or even kill them outright.

    1. Developmental Biology
    2. Physics of Living Systems
    Fridtjof Brauns, Nikolas H Claussen ... Boris I Shraiman
    Research Article

    Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.