Figure 2—figure supplement 3. | The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA

Open accessCopyright infoDownload PDFDownload figuresRelated content

The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA

Figure 2—figure supplement 3.

Affiliation details

University of California, San Francisco, United States
Figure 2—figure supplement 3.
Download figureOpen in new tabFigure 2—figure supplement 3. A comparison of species-specific residues at the interface of the Crm1 dimer.

Species-specific residues form many interactions in the human Crm1 dimer interface (A) but few at the analogous murine positions (B). Aligning the Cα atoms from murine and human Crm1 at the dimer interface (B) shows steric clashes between side chains near Thr411 in murine Crm1 interface and between the side chains of His352 and Thr487 that would prevent murine Crm1 dimerization. (C) Swapping residues between human and murine Crm1 in the dimer interface alters virus production. A summary of data from references (Sherer et al., 2011) and (Elinav et al., 2012) testing the effect of murine or human residues on virus-like particle production or infectivity of HIV or FIV vectors shows the biological relevance of the Crm1 interface. Sherer et al. substituted human residues into murine Crm1 to determine which residues enhanced virus-like particle production (Sherer et al., 2011). Elinav et al. substituted mouse residues into human Crm1 and scored for loss of function (Elinav et al., 2012). In both studies, the gain in activity denoted by ‘h’ is a substitution of all human interface residues into murine Crm1 and vice versa for the loss of activity denoted by ‘m’. Data were normalized according to the following equations: Gain of Function = (mutant activity−murine Crm1 activity)/(human Crm1 activity−murine Crm1 activity) and Loss of Function = Gain of function−1.