Autoimmune Disorders: Thinking differently about lupus

  1. Arthur Wuster
  2. Timothy W Behrens  Is a corresponding author
  1. Genentech Inc., United States

It is always exciting when a new study opens up a whole new way of thinking about a scientific problem. This is especially true if the problem is a health condition that is both poorly understood and incurable. Systemic lupus erythematosus (SLE) is an autoimmune disease in which the immune system attacks healthy tissue – including the skin, joints and many internal organs – by mistake. Moreover, the underlying causes of the disease are not fully understood, so available treatments only tackle its symptoms. Now, in eLife, Patrick Gaffney, Edward Wakeland and colleagues – who include Prithvi Raj and Ekta Rai as joint first authors – report an extensive sequencing study of over 1,000 people with SLE that provides many new insights into the genetics of lupus (Raj et al., 2016).

The researchers – who are based at the University of Texas Southwestern Medical Center, the Oklahoma Medical Research Foundation and other centers in the United States, Belgium and India – focused on 16 regions of the human genome that are known to influence a person’s risk of SLE. Their findings highlight the complexity of the changes in the genome that can predispose someone to develop SLE. Amongst the treasure-trove of data is one gold nugget that stands apart: the discovery that the expression level of the so-called Human Leukocyte Antigen (HLA) class II genes contributes to risk of the disease. This is an entirely new twist on an old story.

The HLA genes are found in a long stretch of DNA on chromosome 6 that contains more than 140 protein-coding genes, many of which are important for immune responses (MHC Sequencing Consortium, 1999; de Bakker et al., 2006). The class I genes encode proteins that are found on the outer membrane of all cells, whereas the class II genes encode proteins found only on specialized immune cells called antigen-presenting cells. In both cases, these proteins bind to small fragments of other proteins and then display them to the immune system. Class I proteins display fragments from within our own cells and protect us from cancer, viral infections and certain bacteria that can live within our cells. Class II proteins, on the other hand, display fragments from foreign invaders and are important for instructing the immune system to mount neutralizing responses to parasites and bacteria that live outside of cells.

The HLA class I and II genes are amongst the most variable DNA sequences in the human genome. There are more than 8,000 different variants, or alleles, of class I genes and more than 2,500 class II alleles (Robinson et al., 2015). These alleles encode slightly different proteins, each with the potential to bind to, and display, different protein fragments.

Hundreds of studies have previously linked class I and II variants with the risk of specific diseases and, without exception, these studies have emphasized the sequence diversity of class I and II genes as the important factor (Welter et al., 2014. For example, individuals who carry the class I allele known as B27 are strongly predisposed to developing a type of arthritis called ankylosing spondylitis, whereas people without the B27 allele appear to be protected against the disease (Caffrey and James, 1973).

The new findings show that the HLA class II alleles conferring risk for SLE encode proteins that are found in greater numbers on the surface of antigen-presenting cells than those encoded by alleles that do not increase the risk (Raj et al., 2016). These data suggest, for the first time, that the abundance of class II proteins on antigen-presenting cells could strongly influence risk of certain diseases.

It remains to be determined how differences in the abundance of class II molecules translate to increased disease risk. Higher levels of class II molecules on antigen-presenting cells could increase the chances that circulating immune cells bind to these molecules, and lead to more efficient immune and autoimmune responses. Another possibility is that the extra class II proteins on antigen-presenting cells could adversely affect a developmental process that would normally eliminate those immune cells that have the potential to cause autoimmune disorders.

Further studies now need to extend the analysis of Raj, Rai et al. to the other major class II alleles that are associated with disease in humans. It will also be important to see if this paradigm extends to the class I alleles. These studies will improve our understanding of the earliest events in autoimmunity and hopefully lead to new treatment options for autoimmune disorders.

References

Article and author information

Author details

  1. Arthur Wuster

    Genentech Inc., South San Francisco, United States
    Competing interests
    AW, TWB are full-time employees of Genentech, Inc.
  2. Timothy W Behrens

    Genentech Inc., South San Francisco, United States
    For correspondence
    behrens.tim@gene.com
    Competing interests
    AW, TWB are full-time employees of Genentech, Inc.

Publication history

  1. Version of Record published:

Copyright

© 2016, Wuster et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,212
    views
  • 164
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arthur Wuster
  2. Timothy W Behrens
(2016)
Autoimmune Disorders: Thinking differently about lupus
eLife 5:e15352.
https://doi.org/10.7554/eLife.15352

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Rashmi Sukumaran, Achuthsankar S Nair, Moinak Banerjee
    Research Article

    Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.

    1. Genetics and Genomics
    Wenjing Liu, Shujin Li ... Xianjun Zhu
    Research Article

    Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.