Abstract

Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v- and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed dilation of single fusion pores using v-SNARE-reconstituted ~23 nm diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of 2, and reached a maximum above ~4 copies per face, but the probability of pore dilation was far from saturating at 15 copies, the NLP capacity. Our experimental and computational results suggest SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient (kiss & run) or an irreversibly dilating pore (full fusion).

Comments

If your username is different from your full name, we require you to identify yourself within the comment itself. Comments are checked by a moderator (and/or an eLife editor) before they appear. Comments should be constructive, relevant to the article, conform to our terms and conditions, and include any pertinent competing interests.