1. Ecology
Download icon

Extinction Risk: Counting the cost of overfishing on sharks and rays

  1. Darcy Bradley  Is a corresponding author
  2. Steven D Gaines  Is a corresponding author
  1. Bren School of Environmental Science and Management, University of California, Santa Barbara, United States
Insight
  • Cited 6
  • Views 3,221
  • Annotations
Cite this article as: eLife 2014;3:e02199 doi: 10.7554/eLife.02199

Abstract

Over half of all shark and ray species are at risk of extinction or at least heading that way.

Main text

Chondrichthyans—the class of fish that includes sharks and rays—are in a bad, bad way. Their numbers have plummeted, mostly due to overfishing, which is largely driven by the demand for shark fin soup (Jackson et al., 2001; Myers and Worm, 2003). All attempts at saving species have fallen short, not because of a lack of concern, but instead because of a lack of data. It is difficult to know just how depleted sharks and rays are in number, just as it is difficult to determine how and where conservation efforts are most desperately needed. This is concerning not just for chondrichthyans, but also for entire ecosystems, because the removal of large-bodied predators, such as sharks, can cause entire food webs to collapse (Stevens et al., 2000; Mumby et al., 2006; Heithaus et al., 2008).

To address this knowledge gap, Nicholas Dulvy of Simon Fraser University and co-workers in Canada, UK, USA, Australia, New Zealand and South Africa have performed a systematic evaluation of the relative extinction risk for more than 1000 species of sharks, rays and the less well known chimaeras (Dulvy et al., 2014). Their findings—which have been published in eLife—are alarming, but more importantly, the story they reveal helps to frame the chondrichthyan problem in ways that can help guide effective solutions.

Overfishing can be a threat anywhere, to any species, yet sharks and rays share characteristics that make them particularly vulnerable. They mature late, they have a long gestation period, and they create few offspring. Moreover, they have large ranges, often spanning waters belonging to more than one nation, so efforts to protect them require international coordination. Furthermore, as they are overfished and their populations drop, the commercial value of these fish only increases, incentivizing further overharvesting.

Dulvy et al. expose a staggering result: more than half of all chondrichthyan species are predicted to be ‘Threatened or Near Threatened’ according to the Red List maintained by the International Union for the Conservation of Nature. By comparison, insects, mammals and amphibians are all under less threat (Figure 1).

Sharks and rays are more under threat than insects, mammals and amphibians.

According to the Red List of Threatened Species maintained by the International Union for the Conservation of Nature (IUCN), 1148 species of insects (24.9% of the total), 1467 species of mammals (26.6%) and 2339 species of amphibians (36.5%) are ‘Threatened or Near Threatened’. Dulvy et al. estimate that for sharks and rays this figure is 562 species (53.9% of the total). The IUCN definition of Threatened includes species that are Critically Endangered, Endangered or Vulnerable.

Illustrations: Dru Drury, USDA APHIS, and Nobu Tamura. Photograph: Chris Huh.

One of the biggest challenges to compiling such estimates of global threat is that there are very limited data available for many species. Indeed, nearly half of the shark and ray species are formally classified as ‘Data Deficient’, which is one of the highest proportions of any class of species (Hoffmann et al., 2010). To overcome this challenge, which is common for all species at risk, Dulvy et al. used information about those species of sharks and rays for which abundant data were available to derive general patterns that are associated with a higher risk of extinction. By classifying the attributes of these different species—by answering questions such as, where do they live, how deep do they swim, what size are they—Dulvy et al. were able to generate model predictions for the likely status of species with more limited data.

They found that the most useful factors for determining if a particular species had an elevated risk of extinction was its maximum body size, the minimum depth of water in which it lived, and the range of depth—with larger species and those that swim in shallower waters having the largest risk. Although geographic range is closely linked to extinction risk in many groups of animals, it is largely unrelated to the extinction risk of sharks and rays. These threat patterns highlight the devastating impact of fishing on chondrichthyans—shark and ray fishing activity is now so ubiquitous that only species with broad depth ranges can escape from fishing gear.

Forecasting the extinction risk of sharks and rays can guide future management actions and policy decisions—especially for those species without sufficient data to allow more formal assessments of their status. For example, the enormous variation between regions in the status of sharks and rays evident in the findings of Dulvy et al. provides scope for setting region specific conservation priorities. It should also allow us to identify examples of current successes—where shark and ray populations are doing well—that we will need to replicate to secure the long-term future survival of these fish.

In addition, an important pattern that has emerged in global analyses of other fished species is that fisheries with more definite estimates of their stock status tend to be in substantially better condition than fisheries with limited information (Worm et al., 2009; Costello et al., 2012). This information is also valuable for conservation efforts, as it is hard to make effective decisions in the absence of fact. Although the estimates of species status in this new study still have large uncertainties, they do provide an important step towards gaining information that can drive more effective conservation and management decisions.

As we look to the future of sharks and rays, one key challenge lies in first developing species assessments with better estimates of the populations involved. These assessments can then be linked with effective management practices that have been successfully employed in large numbers of global fisheries. Dulvy et al. stress that it is unclear whether the declining populations of sharks and rays that live around the world can be reversed on a local scale. Instead, these trends could be symptomatic of some long-term and widespread accumulation of extinction risk across the world’s seas and oceans. The insight from this new global analysis enhances the chance for recovery if these findings help drive effective local and collaborative action.

References

    1. Hoffman M
    2. Hilton-Taylor C
    3. Angulo A
    4. Böhm M
    5. Brooks TM
    6. Butchart SH
    7. Carpenter KE
    8. Chanson J
    9. Collen B
    10. Cox NA
    11. Darwall WR
    12. Dulvy NK
    13. Harrison LR
    14. Katariya V
    15. Pollock CM
    16. Quader S
    17. Richman NI
    18. Rodrigues AS
    19. Tognelli MF
    20. Vié JC
    21. Aguiar JM
    22. Allen DJ
    23. Allen GR
    24. Amori G
    25. Ananjeva NB
    26. Andreone F
    27. Andrew P
    28. Aquino Ortiz AL
    29. Baillie JE
    30. Baldi R
    31. Bell BD
    32. Biju SD
    33. Bird JP
    34. Black-Decima P
    35. Blanc JJ
    36. Bolaños F
    37. Bolivar- G W
    38. Burfield IJ
    39. Burton JA
    40. Capper DR
    41. Castro F
    42. Catullo G
    43. Cavanagh RD
    44. Channing A
    45. Chao NL
    46. Chenery AM
    47. Chiozza F
    48. Clausnitzer V
    49. Collar NJ
    50. Collett LC
    51. Collette BB
    52. Cortez Fernandez CF
    53. Craig MT
    54. Crosby MJ
    55. Cumberlidge N
    56. Cuttelod A
    57. Derocher AE
    58. Diesmos AC
    59. Donaldson JS
    60. Duckworth JW
    61. Dutson G
    62. Dutta SK
    63. Emslie RH
    64. Farjon A
    65. Fowler S
    66. Freyhof J
    67. Garshelis DL
    68. Gerlach J
    69. Gower DJ
    70. Grant TD
    71. Hammerson GA
    72. Harris RB
    73. Heaney LR
    74. Hedges SB
    75. Hero JM
    76. Hughes B
    77. Hussain SA
    78. Icochea M J
    79. Inger RF
    80. Ishii N
    81. Iskandar DT
    82. Jenkins RK
    83. Kaneko Y
    84. Kottelat M
    85. Kovacs KM
    86. Kuzmin SL
    87. La Marca E
    88. Lamoreux JF
    89. Lau MW
    90. Lavilla EO
    91. Leus K
    92. Lewison RL
    93. Lichtenstein G
    94. Livingstone SR
    95. Lukoschek V
    96. Mallon DP
    97. McGowan PJ
    98. McIvor A
    99. Moehlman PD
    100. Molur S
    101. Muñoz Alonso A
    102. Musick JA
    103. Nowell K
    104. Nussbaum RA
    105. Olech W
    106. Orlov NL
    107. Papenfuss TJ
    108. Parra-Olea G
    109. Perrin WF
    110. Polidoro BA
    111. Pourkazemi M
    112. Racey PA
    113. Ragle JS
    114. Ram M
    115. Rathbun G
    116. Reynolds RP
    117. Rhodin AG
    118. Richards SJ
    119. Rodríguez LO
    120. Ron SR
    121. Rondinini C
    122. Rylands AB
    123. Sadovy de Mitcheson Y
    124. Sanciangco JC
    125. Sanders KL
    126. Santos-Barrera G
    127. Schipper J
    128. Self-Sullivan C
    129. Shi Y
    130. Shoemaker A
    131. Short FT
    132. Sillero-Zubiri C
    133. Silvano DL
    134. Smith KG
    135. Smith AT
    136. Snoeks J
    137. Stattersfield AJ
    138. Symes AJ
    139. Taber AB
    140. Talukdar BK
    141. Temple HJ
    142. Timmins R
    143. Tobias JA
    144. Tsytsulina K
    145. Tweddle D
    146. Ubeda C
    147. Valenti SV
    148. van Dijk PP
    149. Veiga LM
    150. Veloso A
    151. Wege DC
    152. Wilkinson M
    153. Williamson EA
    154. Xie F
    155. Young BE
    156. Akçakaya HR
    157. Bennun L
    158. Blackburn TM
    159. Boitani L
    160. Dublin HT
    161. da Fonseca GA
    162. Gascon C
    163. Lacher TE Jnr
    164. Mace GM
    165. Mainka SA
    166. McNeely JA
    167. Mittermeier RA
    168. Reid GM
    169. Rodriguez JP
    170. Rosenberg AA
    171. Samways MJ
    172. Smart J
    173. Stein BA
    174. Stuart SN
    (2010) The impact of conservation on the status of the world’s vertebrates
    Science 330:1503–1509.
    https://doi.org/10.1126/science.1194442

Article and author information

Author details

  1. Darcy Bradley

    Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    dbradley@bren.ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Steven D Gaines

    Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, United States
    For correspondence
    gaines@bren.ucsb.edu
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: February 5, 2014 (version 1)

Copyright

© 2014, Bradley and Gaines

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,221
    Page views
  • 273
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

  1. Over half of all shark and ray species are "€œthreatened or near threatened"€ according to new estimates.

    1. Ecology
    2. Microbiology and Infectious Disease
    Heidi A Arjes et al.
    Research Article Updated

    Life in a three-dimensional biofilm is typical for many bacteria, yet little is known about how strains interact in this context. Here, we created essential gene CRISPR interference knockdown libraries in biofilm-forming Bacillus subtilis and measured competitive fitness during colony co-culture with wild type. Partial knockdown of some translation-related genes reduced growth rates and led to out-competition. Media composition led some knockdowns to compete differentially as biofilm versus non-biofilm colonies. Cells depleted for the alanine racemase AlrA died in monoculture but survived in a biofilm colony co-culture via nutrient sharing. Rescue was enhanced in biofilm colony co-culture with a matrix-deficient parent due to a mutualism involving nutrient and matrix sharing. We identified several examples of mutualism involving matrix sharing that occurred in three-dimensional biofilm colonies but not when cultured in two dimensions. Thus, growth in a three-dimensional colony can promote genetic diversity through sharing of secreted factors and may drive evolution of mutualistic behavior.