1. Epidemiology and Global Health
  2. Microbiology and Infectious Disease
Download icon

Host-pathogen Interactions: Honing in on enteric fever

  1. Lyle R McKinnon  Is a corresponding author
  2. Quarraisha Abdool Karim  Is a corresponding author
  1. Centre for the AIDS Programme of Research in South Africa (CAPRISA), South Africa
Insight
  • Cited 2
  • Views 607
  • Annotations
Cite this article as: eLife 2014;3:e03545 doi: 10.7554/eLife.03545

Abstract

The use of metabolomics could lead to improved diagnostics for enteric fever.

Main text

Enteric fever, also known as typhoid, is a disease that affects about 22 million people and causes about 200,000 deaths every year, according to conservative estimates (Buckle et al., 2012). Enteric fever is spread by bacteria belonging to the Salmonella genus, with two sub-species—Salmonella Typhi and Salmonella Paratyphi A—being responsible for most cases of the disease. And although the number of cases of enteric fever has fallen significantly over recent decades, there is a clear need for a diagnostic test for Salmonella that is rapid, affordable and accurate. Moreover, it is important to be able to distinguish between enteric fever caused by Salmonella Typhi and enteric fever caused by Salmonella Paratyphi A in order to ensure that the correct drugs are prescribed and to combat the development of antibiotic resistance.

The ideal diagnostic test offers high levels of sensitivity (that is, it is able to detect a high proportion of the people tested who have a particular disease), and also high levels of specificity (that is, it returns a ‘No’ for a high proportion of people without the disease). The current gold standard diagnostic tool for enteric fever is blood culture, but this has a low specificity and it is also challenging to perform consistently in regions with limited resources. As a consequence, misdiagnosis and mistreatment of enteric fever is common, which leads to poor clinical outcomes and the potential spread of antibiotic resistance. The development of nucleic acid and antigen-detection tests to diagnose enteric fever has faced similar challenges, with lower than expected sensitivity and specificity. One explanation for this could be that the levels of Salmonella in the blood tend to be very low at all stages of the disease (Darton et al., 2014).

Now, in eLife, Elin Näsström and co-workers at Umeå University, Oxford University (including clinical research units in Ho Chi Minh City and Kathmandu), and the London School of Hygiene and Tropical Medicine apply a promising new approach to this challenge (Näsström et al., 2014). Instead of trying to detect Salmonella in the blood during infection, they used a technique called metabolomics. The basic idea of this approach is that infection leads to metabolic changes, such that a person with enteric fever (or any infection) could have a profile of metabolites in their blood that is different to the metabolite profile of a healthy person. The challenge, therefore, is to identify a ‘metabolic fingerprint’ that can be used to detect enteric fever with high levels of sensitivity and specificity.

The application of metabolomics is relatively new in infectious diseases research compared to the application of genomics and proteomics. Despite this, screening the metabolome in blood plasma has identified useful prognostic profiles of several diseases, including sepsis (Langley et al., 2013). One of the major benefits of this technique is that it utilizes a pattern of biomarkers (that is, the various metabolites), as opposed to relying on just one host biomarker, as has been the focus of previous approaches.

Näsström et al. collected blood samples from 75 participants from South East Asia: 25 had enteric fever caused by S. Typhi, 25 had enteric fever caused by S. Paratyphi A, and 25 did not have enteric fever. Using a combination of gas chromatography and mass spectrometry, Näsström et al. identified 695 distinct peaks that were associated with different metabolites: from these they selected six peaks that had significantly different heights in the three groups of patients. This meant that they were able to tell if the patient had S. Typhi, S. Paratyphi A, or neither. That this mass spectrometric analysis was able to distinguish two Salmonella groups that share many similarities is remarkable. Moreover, in addition to its diagnostic potential, this new approach might also provide insights into the antigenic and physiological differences between the two strains.

There are, however, several issues that need to be addressed before this work will reach the clinic. The sample size in the study was relatively small (although it was randomly collected from a clinical trial repository). Näsström et al. also acknowledge that they did not perform any external validation, so it is not clear that the six biomarkers they identified will be relevant in other populations. It will be necessary to address these two points in future trials. Lastly, while negative controls were included, an expanded set of all-cause fever samples (that is, samples in which the enteric fever was caused by other organisms) will be needed to determine how well this panel of six biomarkers will perform in a real clinical setting.

Nevertheless, these findings represent an important step in the right direction. Näsström et al. acknowledge that mass spectrometers are too complex and expensive for routine use, but other more affordable technologies may be able to detect the six-metabolite fingerprint that they have identified. It might also be possible to use a similar approach to diagnose other bacterial infections.

Finally, given that antibiotic resistance is now a major public health challenge, and that we might be entering a ‘post-antibiotic era’ (Woolhouse and Farrar, 2014), these findings could represent a substantial technological advance and an important first step to addressing the problem of diagnosing and properly treating enteric fever and other blood-borne infections.

References

Article and author information

Author details

  1. Lyle R McKinnon

    Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
    For correspondence
    sijuisijali@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Quarraisha Abdool Karim

    Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
    For correspondence
    abdoolq2@ukzn.ac.za
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: July 1, 2014 (version 1)

Copyright

© 2014, McKinnon and Abdool Karim

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 607
    Page views
  • 17
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Epidemiology and Global Health
    Ariel Karlinsky, Dmitry Kobak
    Tools and Resources Updated

    Comparing the impact of the COVID-19 pandemic between countries or across time is difficult because the reported numbers of cases and deaths can be strongly affected by testing capacity and reporting policy. Excess mortality, defined as the increase in all-cause mortality relative to the expected mortality, is widely considered as a more objective indicator of the COVID-19 death toll. However, there has been no global, frequently updated repository of the all-cause mortality data across countries. To fill this gap, we have collected weekly, monthly, or quarterly all-cause mortality data from 103 countries and territories, openly available as the regularly updated World Mortality Dataset. We used this dataset to compute the excess mortality in each country during the COVID-19 pandemic. We found that in several worst-affected countries (Peru, Ecuador, Bolivia, Mexico) the excess mortality was above 50% of the expected annual mortality (Peru, Ecuador, Bolivia, Mexico) or above 400 excess deaths per 100,000 population (Peru, Bulgaria, North Macedonia, Serbia). At the same time, in several other countries (e.g. Australia and New Zealand) mortality during the pandemic was below the usual level, presumably due to social distancing measures decreasing the non-COVID infectious mortality. Furthermore, we found that while many countries have been reporting the COVID-19 deaths very accurately, some countries have been substantially underreporting their COVID-19 deaths (e.g. Nicaragua, Russia, Uzbekistan), by up to two orders of magnitude (Tajikistan). Our results highlight the importance of open and rapid all-cause mortality reporting for pandemic monitoring.

    1. Epidemiology and Global Health
    2. Immunology and Inflammation
    Corbin SC Johnson et al.
    Research Article

    Dietary changes associated with industrialization substantially increase the prevalence of chronic diseases, such as obesity, type II diabetes, and cardiovascular disease, major contributors to the public health burden. The high prevalence of these chronic diseases is often attributed to an 'evolutionary mismatch' between human physiology and modern nutritional environments. Western diets enriched with foods that were scarce throughout human evolutionary history (e.g., simple sugars and saturated fats) promote inflammation and disease relative to diets more akin to ancestral human hunter-gatherer diets, such as a Mediterranean diet. Peripheral blood monocytes, precursors to macrophages and important mediators of innate immunity and inflammation, are sensitive to the environment and may represent a critical intermediate in the pathway linking diet to disease. We evaluated the effects of 15 months of whole diet manipulations mimicking human Western or Mediterranean diet patterns on monocyte polarization using a well-established model of human health, the cynomolgus macaque (Macaca fascicularis). Monocyte transcriptional profiles differed markedly between the two diets, with 40% of transcripts showing differential expression (FDR < 0.05). Monocytes from Western diet consumers were polarized toward a more proinflammatory phenotype. Compared to the Mediterranean diet, the Western diet shifted the co-expression of 445 gene pairs, including small RNAs and transcription factors associated with metabolism and adiposity in humans, and dramatically altered behavior. For example, Western-fed individuals were more anxious and less socially integrated compared to the Mediterranean-fed subjects. These behavioral changes were also associated with some of the effects of diet on gene expression, suggesting an interaction between diet, central nervous system activity, and monocyte gene expression. The results of this study provide new insights into evolutionary mismatch at the molecular level and uncover new pathways through which Western diets alter monocyte polarization toward a proinflammatory phenotype.