Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity

  1. Conor Howard
  2. Victor Hanson-Smith
  3. Kristopher J Kennedy
  4. Chad J Miller
  5. Hua Jane Lou
  6. Alexander D Johnson
  7. Benjamin Turk
  8. Liam J Holt  Is a corresponding author
  1. University of California Berkeley, United States
  2. University of California, San Francisco, United States
  3. Yale University School of Medicine, United States
  4. University of California San Francisco, United States

Abstract

Protein kinases have evolved diverse specificities to enable cellular information processing. To gain insight into the mechanisms underlying kinase diversification, we studied the CMGC protein kinases using ancestral reconstruction. Within this group, the cyclin dependent kinases (CDKs) and mitogen activated protein kinases (MAPKs), require proline at the +1 position of their substrates, while Ime2 prefers arginine. The resurrected common ancestor of CDKs, MAPKs and Ime2 could phosphorylate substrates with +1 proline or arginine, with preference for proline. This specificity changed to a strong preference for +1 arginine in the lineage leading to Ime2 via an intermediate with equal specificity for proline and arginine. Mutant analysis revealed that a variable residue within the kinase catalytic cleft, DFGx, modulates +1 specificity. Expansion of Ime2 kinase specificity by mutation of this residue did not cause dominant deleterious effects in vivo. Tolerance of cells to new specificities likely enabled the evolutionary divergence of kinases.

Article and author information

Author details

  1. Conor Howard

    University of California Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Victor Hanson-Smith

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristopher J Kennedy

    University of California Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chad J Miller

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hua Jane Lou

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander D Johnson

    University of California San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Benjamin Turk

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Liam J Holt

    University of California Berkeley, Berkeley, United States
    For correspondence
    liamholt@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. James Ferrell, Stanford University, United States

Publication history

  1. Received: July 23, 2014
  2. Accepted: October 9, 2014
  3. Accepted Manuscript published: October 13, 2014 (version 1)
  4. Accepted Manuscript updated: October 14, 2014 (version 2)
  5. Version of Record published: November 12, 2014 (version 3)
  6. Version of Record updated: April 29, 2016 (version 4)
  7. Version of Record updated: August 5, 2016 (version 5)

Copyright

© 2014, Howard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,906
    Page views
  • 654
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Conor Howard
  2. Victor Hanson-Smith
  3. Kristopher J Kennedy
  4. Chad J Miller
  5. Hua Jane Lou
  6. Alexander D Johnson
  7. Benjamin Turk
  8. Liam J Holt
(2014)
Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity
eLife 3:e04126.
https://doi.org/10.7554/eLife.04126
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Hidehiko Okuma, Jeffrey M Hord ... Kevin P Campbell
    Research Advance

    Dystroglycan (DG) requires extensive post-translational processing and O-glycosylation to function as a receptor for extracellular matrix (ECM) proteins containing laminin-G-like (LG) domains. Matriglycan is an elongated polysaccharide of alternating xylose (Xyl) and glucuronic acid (GlcA) that binds with high-affinity to ECM proteins with LG-domains and is uniquely synthesized on α-dystroglycan (α-DG) by like-acetylglucosaminyltransferase-1 (LARGE1). Defects in the post-translational processing or O-glycosylation of α-DG that result in a shorter form of matriglycan reduce the size of α-DG and decrease laminin binding, leading to various forms of muscular dystrophy. Previously, we demonstrated that Protein O-Mannose Kinase (POMK) is required for LARGE1 to generate full-length matriglycan on α-DG (~150-250 kDa) (Walimbe et al., 2020). Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in mouse skeletal muscle that lacks the DG N-terminus (α-DGN), resulting in a ~100-125 kDa α-DG. This smaller form of α-DG binds laminin and maintains specific force but does not prevent muscle pathophysiology, including reduced force production after eccentric contractions or abnormalities in the neuromuscular junctions. Collectively, our study demonstrates that α-DGN, like POMK, is required for LARGE1 to extend matriglycan to its full mature length on α-DG and thus prevent muscle pathophysiology.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Abhinay Ramaprasad, Paul-Christian Burda ... Michael J Blackman
    Research Article Updated

    The malaria parasite Plasmodium falciparum synthesizes significant amounts of phospholipids to meet the demands of replication within red blood cells. De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway is essential, requiring choline that is primarily sourced from host serum lysophosphatidylcholine (lysoPC). LysoPC also acts as an environmental sensor to regulate parasite sexual differentiation. Despite these critical roles for host lysoPC, the enzyme(s) involved in its breakdown to free choline for PC synthesis are unknown. Here, we show that a parasite glycerophosphodiesterase (PfGDPD) is indispensable for blood stage parasite proliferation. Exogenous choline rescues growth of PfGDPD-null parasites, directly linking PfGDPD function to choline incorporation. Genetic ablation of PfGDPD reduces choline uptake from lysoPC, resulting in depletion of several PC species in the parasite, whilst purified PfGDPD releases choline from glycerophosphocholine in vitro. Our results identify PfGDPD as a choline-releasing glycerophosphodiesterase that mediates a critical step in PC biosynthesis and parasite survival.