Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity

  1. Conor Howard
  2. Victor Hanson-Smith
  3. Kristopher J Kennedy
  4. Chad J Miller
  5. Hua Jane Lou
  6. Alexander D Johnson
  7. Benjamin Turk
  8. Liam J Holt  Is a corresponding author
  1. University of California Berkeley, United States
  2. University of California, San Francisco, United States
  3. Yale University School of Medicine, United States
  4. University of California San Francisco, United States

Abstract

Protein kinases have evolved diverse specificities to enable cellular information processing. To gain insight into the mechanisms underlying kinase diversification, we studied the CMGC protein kinases using ancestral reconstruction. Within this group, the cyclin dependent kinases (CDKs) and mitogen activated protein kinases (MAPKs), require proline at the +1 position of their substrates, while Ime2 prefers arginine. The resurrected common ancestor of CDKs, MAPKs and Ime2 could phosphorylate substrates with +1 proline or arginine, with preference for proline. This specificity changed to a strong preference for +1 arginine in the lineage leading to Ime2 via an intermediate with equal specificity for proline and arginine. Mutant analysis revealed that a variable residue within the kinase catalytic cleft, DFGx, modulates +1 specificity. Expansion of Ime2 kinase specificity by mutation of this residue did not cause dominant deleterious effects in vivo. Tolerance of cells to new specificities likely enabled the evolutionary divergence of kinases.

Article and author information

Author details

  1. Conor Howard

    University of California Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Victor Hanson-Smith

    University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristopher J Kennedy

    University of California Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chad J Miller

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hua Jane Lou

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander D Johnson

    University of California San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Benjamin Turk

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Liam J Holt

    University of California Berkeley, Berkeley, United States
    For correspondence
    liamholt@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Howard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,987
    views
  • 674
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Conor Howard
  2. Victor Hanson-Smith
  3. Kristopher J Kennedy
  4. Chad J Miller
  5. Hua Jane Lou
  6. Alexander D Johnson
  7. Benjamin Turk
  8. Liam J Holt
(2014)
Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity
eLife 3:e04126.
https://doi.org/10.7554/eLife.04126

Share this article

https://doi.org/10.7554/eLife.04126

Further reading

    1. Biochemistry and Chemical Biology
    Luca Unione, Jesús Jiménez-Barbero
    Insight

    Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristina Ehring, Sophia Friederike Ehlers ... Kay Grobe
    Research Article

    The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.