Microbial Evolution: Adaptation on a genomic scale

  1. István Bartha
  2. Jacques Fellay  Is a corresponding author
  1. École Polytechnique Fédérale de Lausanne, Switzerland

Adaptation to new environments is of fundamental importance in ecology. Infectious agents and cancer cells also relentlessly adapt to escape detection by the immune system and to avoid being killed by drugs targeted at them. The nature and extent of adaptive changes in various human pathogens have been studied under well-controlled conditions in the laboratory (Foll et al., 2014; Szamecz et al., 2014), and also in clinical samples (Mukherjee et al., 2011; Poon et al., 2012). Several mutations leading to drug resistance in Candida albicans, a species of yeast that causes oral and genital infections in humans, have been identified through targeted gene sequencing or large-scale genotyping approaches (MacCallum et al., 2010; Dhamgaye et al., 2012). Now, in eLife, Dawn Thompson and Aviv Regev of the Broad Institute of MIT and Harvard and co-workers—including Christopher Ford and Jason Funt as joint first authors—describe the genomic adaptation of C. albicans when it is exposed to a common antifungal compound (Ford et al., 2015).

C. albicans is found in a large fraction of the human population. Normally, it does not affect its host, but it can become pathogenic in people with weakened immune systems (Mayer et al., 2013). C. albicans has a diploid genome—a common feature of sexually reproducing species, featuring two sets of each chromosome—but has a predominantly asexual life cycle (Diogo et al., 2009). These genetic features are very similar to those of cancer cells (Landau et al., 2013).

To shed light on the development of drug resistant strains in vivo, Ford, Funt et al. studied samples from HIV-infected individuals diagnosed with a fungal infection called oral candidiasis and treated with fluconazole. This drug works by preventing C. albicans making a molecule called ergosterol that is incorporated into the cell membrane: without this molecule the yeast cell can't grow.

Ford, Funt et al. analyzed 43 fungal isolates collected from 11 individuals, with several samples taken from each individual over a period of several months. Using deep-sequencing technology, they obtained a whole genome sequence of C. albicans from each sample, which allowed them to produce a comprehensive catalogue of the different genetic variants of the fungus. These variants range from single nucleotide mutations in the DNA of the cells to large-scale genetic changes such as loss of heterozygosity (where one of the two copies of a chromosomal region is lost) and aneuploidies (where the cell contains either more or fewer chromosomes than normal). Of note, all sequencing data have been made publicly available, which is an unprecedented resource for the research community.

The first isolate, collected before treatment started, provided a snapshot of pre-existing genetic variation and was used to filter out non-drug-related mutations. To identify the genes that are under selection pressure during fluconazole therapy, Ford, Funt et al. searched for mutations called ‘non-synonymous coding single nucleotide polymorphisms’ that emerged and persisted in at least three of the patients under treatment. These mutations alter a single DNA nucleotide, which subsequently changes the identity of an amino acid in one of the proteins produced by the cell. Such mutations were observed in a total of 240 genes, notably including genes encoding proteins involved in fungal cell wall formation or in the regulation of the efflux pumps that move toxic substances out of the cell.

Among the larger-scale genetic variants, loss of heterozygosity events were significantly associated with higher drug resistance, whereas most aneuploidies were transient and had no detectable impact. However, aneuploidies may still indirectly help resistance to develop by increasing the likelihood that loss of heterozygosity events occur following the loss of a chromosome. Measurement of the in vitro fitness of the sequenced strains convincingly demonstrated that C. albicans had adapted to fluconazole: the measured fitness of the last isolate was indeed higher in the presence of the drug than without it.

Because a single colony was sequenced at each time point, it was not possible to distinguish between the appearance of new mutations and the selection of pre-existing minority variants in response to drug pressure. Most isolates from each individual were highly related, suggesting that samples collected in the same patient share the same common ancestor. Despite this clonal relationship, significant within-host diversity was present, as various isolates of the same patient differed by thousands of single nucleotide polymorphisms.

A remaining open question is whether pre-existing genetic variation is maintained at low levels in the C. albicans population throughout the treatment period, or if only drug-selected strains are conserved. To address this, more in-depth genomic analyses of fungal sub-populations are needed. An obvious first step would be to study the loss of heterozygosity events in greater detail, because such mutations are irreversible in clonal populations with a purely asexual life cycle. Therefore, valuable insights into the diversity of C. albicans inside a single host could be gained by investigating whether any of the resistance-inducing loss of heterozygosity events reverses after fluconazole treatment has ended.

The work by Ford, Funt et al. provides a global description of the genetic processes underlying drug resistance and adaptation in C. albicans. What else could now be learned about microbial evolution using deep sequencing technology? First, the analysis of multiple strains collected simultaneously in the same infected patient has the potential to reveal population structure, dynamics and diversity. Second, mechanistic and temporal details governing the emergence of escape mutations will certainly be gained from in vitro experiments, including the characterization of single colonies over time. Finally, the sequencing of paired host and pathogen genomes opens the door to innovative studies of host-specific adaptation.


Article and author information

Author details

  1. István Bartha

    School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacques Fellay

    School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: February 3, 2015 (version 1)


© 2015, Bartha and Fellay

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,577
    Page views
  • 116
  • 2

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. István Bartha
  2. Jacques Fellay
Microbial Evolution: Adaptation on a genomic scale
eLife 4:e06193.
  1. Further reading

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Carolina A Martinez-Gutierrez, Josef C Uyeda, Frank O Aylward
    Research Article

    Microbial plankton play a central role in marine biogeochemical cycles, but the timing in which abundant lineages diversified into ocean environments remains unclear. Here, we reconstructed the timeline in which major clades of bacteria and archaea colonized the ocean using a high-resolution benchmarked phylogenetic tree that allows for simultaneous and direct comparison of the ages of multiple divergent lineages. Our findings show that the diversification of the most prevalent marine clades spans throughout a period of 2.2 Ga, with most clades colonizing the ocean during the last 800 million years. The oldest clades – SAR202, SAR324, Ca. Marinimicrobia, and Marine Group II – diversified around the time of the Great Oxidation Event, during which oxygen concentration increased but remained at microaerophilic levels throughout the Mid-Proterozoic, consistent with the prevalence of some clades within these groups in oxygen minimum zones today. We found the diversification of the prevalent heterotrophic marine clades SAR11, SAR116, SAR92, SAR86, and Roseobacter as well as the Marine Group I to occur near to the Neoproterozoic Oxygenation Event (0.8–0.4 Ga). The diversification of these clades is concomitant with an overall increase of oxygen and nutrients in the ocean at this time, as well as the diversification of eukaryotic algae, consistent with the previous hypothesis that the diversification of heterotrophic bacteria is linked to the emergence of large eukaryotic phytoplankton. The youngest clades correspond to the widespread phototrophic clades Prochlorococcus, Synechococcus, and Crocosphaera, whose diversification happened after the Phanerozoic Oxidation Event (0.45–0.4 Ga), in which oxygen concentrations had already reached their modern levels in the atmosphere and the ocean. Our work clarifies the timing at which abundant lineages of bacteria and archaea colonized the ocean, thereby providing key insights into the evolutionary history of lineages that comprise the majority of prokaryotic biomass in the modern ocean.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Zachary Baker, Molly Przeworski, Guy Sella
    Research Article Updated

    In many species, meiotic recombination events tend to occur in narrow intervals of the genome, known as hotspots. In humans and mice, double strand break (DSB) hotspot locations are determined by the DNA-binding specificity of the zinc finger array of the PRDM9 protein, which is rapidly evolving at residues in contact with DNA. Previous models explained this rapid evolution in terms of the need to restore PRDM9 binding sites lost to gene conversion over time, under the assumption that more PRDM9 binding always leads to more DSBs. This assumption, however, does not align with current evidence. Recent experimental work indicates that PRDM9 binding on both homologs facilitates DSB repair, and that the absence of sufficient symmetric binding disrupts meiosis. We therefore consider an alternative hypothesis: that rapid PRDM9 evolution is driven by the need to restore symmetric binding because of its role in coupling DSB formation and efficient repair. To this end, we model the evolution of PRDM9 from first principles: from its binding dynamics to the population genetic processes that govern the evolution of the zinc finger array and its binding sites. We show that the loss of a small number of strong binding sites leads to the use of a greater number of weaker ones, resulting in a sharp reduction in symmetric binding and favoring new PRDM9 alleles that restore the use of a smaller set of strong binding sites. This decrease, in turn, drives rapid PRDM9 evolutionary turnover. Our results therefore suggest that the advantage of new PRDM9 alleles is in limiting the number of binding sites used effectively, rather than in increasing net PRDM9 binding. By extension, our model suggests that the evolutionary advantage of hotspots may have been to increase the efficiency of DSB repair and/or homolog pairing.