Neurophysiology: Serotonin's many meanings elude simple theories
Dopamine and serotonin are neuromodulators. Produced by small assemblies (or nuclei) of neurons deep in the brain stem, these molecules are projected throughout the brain to regulate the excitability and plasticity of broad neural networks via a fiendishly complex cast of receptor types. The importance of neuromodulators is underscored by their involvement in a wealth of neurological and psychiatric diseases. What has been harder to pin down are the details of their computational roles, particularly the semantics of what they signal. Now, in eLife, Jeremiah Cohen, Mackenzie Amoroso and Naoshige Uchida add much-needed data about the activity of neurons that release serotonin in a task involving predictable rewards and punishments (Cohen et al., 2015). These data nicely muddy the theoretical waters.
The past two decades have ascribed dopamine a particularly crisp computational role. Seminal electrophysiological recordings suggested that the phasic activity of dopamine-producing neurons—the brief spikes in electrical activity seen after a stimulus is applied—closely resembles a sophisticated form of ‘prediction error’ that can be used to learn how much reward to expect and then influence the choice of appropriate actions. Interpreting electrophysiological recordings, however, has always been difficult.
Neuromodulatory neurons reside in complex nuclei that harbour many different types of neurons, raising doubts about whether any recorded electrophysiological activity can really be related to particular neuromodulators. Such doubts have largely been settled for dopamine by Cohen, Uchida and co-workers at Harvard University (Cohen et al., 2012) using optogenetic tagging: this technique allows the dopamine neurons to be electrophysiologically identified by genetically modifying them so that they can be stimulated with light (Lima et al., 2009).
Serotonin, by comparison, has been more elusive. There is a rather broad, though not completely self-consistent, cluster of electrophysiological, pharmacological, depletion- and lesion-based results suggesting that serotonin might play a critical role in preventing active behaviours or deciding to withdraw from a situation. In this role, it is often associated with the anticipation and/or delivery of a punishment (Deakin and Graeff, 1991; Schweimer et al., 2008; Amo et al., 2014). More recent optogenetic evidence that serotonin is involved in patience could be at least partially related to this (Miyazaki et al., 2014). Along with more direct findings, these results have collectively, if somewhat controversially, been discussed in terms of serotonin (putatively linked with punishment and inhibition) and dopamine (putatively linked with reward and activation) playing opposing roles (Deakin and Graeff, 1991).
However, there is both electrophysiological and optogenetic evidence that serotonin is involved in many other roles, such as rhythmic motor activity (Ranade and Mainen, 2009). There is also recent, direct, evidence for its association with reward (Liu et al., 2014). Indeed, the fact that selective serotonin reuptake inhibitors (SSRIs) are the major treatment for depression has always hinted at a role for serotonin in the ascription or use of positive values. The mooted explanation for serotonin's role in this process—that the positive associations arise from adaptions that produce appropriate responses to losses (Dayan and Huys, 2008)—seems unlikely to suffice in the face of all this contrary evidence.
Here, Cohen (who is now at Johns Hopkins University), Amoroso and Uchida (who are both at Harvard University) used optogenetic tagging to identify the serotonergic neurons of mice in a brain area called the dorsal raphe nucleus (Cohen et al., 2015). They then studied the activation of these cells in awake animals under a Pavlovian conditioning paradigm. In blocks of trials, particular odours preceded a reward (water), a punishment (bitter-tasting quinine, or an airpuff to the face) or nothing, so that the mice learned to associate an odour with a particular outcome. The first, sobering, finding was that both tagged and untagged neurons show a substantial diversity in their electrical activity and the aspects of the behaviour with which this activity was correlated. This shows the likely impossibility of classifying whether a neuron is serotonergic without some form of molecular proof.
In addition, the results add substantially to our knowledge about the complex relationship between the activity of serotonergic neurons and rewards and punishments. There are three key responses to consider: the baseline activity just before each odour, potentially reflecting the level of reward or punishment of the block; the activity inspired by the odour; and the activity produced by the outcome that the odour predicts.
Very crudely, blocks of rewards elicited greater tonic activity—that is, more sustained firing—between trials in serotonin neurons than blocks of punishments (although the opposite pattern was also apparent). Such a link of tonic activity to the average level of reward had previously been proposed for dopamine rather than serotonin (Niv et al., 2007). Strikingly, when Cohen and colleagues recorded from dopamine neurons they failed to find such a signal. How tonic serotonin represents average reward is, however, complicated: though responding more to rewards than losses, serotonin neurons mostly decreased their tonic firing rates as the size of the average reward increased. Nevertheless, the phasic responses of the neurons to reward-predicting odours were more prominent than those to punishment-predicting odours. Conversely, the actual delivery of a punishment produced more pronounced phasic activity than the delivery of a reward. This latter finding is consistent with a class of neurons recorded in anaesthetized animals (Schweimer et al., 2008).
This notable paper by Cohen and colleagues is credibly the end of the end of theories of serotonin acting as an aversive counterpart to dopamine. It may also be the end of the beginning of a new wave of results (Schweimer et al., 2008; Amo et al., 2014; Liu et al., 2014; Miyazaki et al., 2014) that have reinforced a richly varied picture of this neuromodulator's role in motivation and emotion. The beginning of the end of our befuddlement might come through using markers or methods that allow neurons activated during behaviour to be re-activated experimentally (such as the conditional expression of channelrhodopsin in activated serotonergic neurons). This could allow the motley collection of neural subgroups observed in the dorsal and median raphe nuclei (Lowry et al., 2005) to be further resolved.
References
-
Serotonin, inhibition, and negative moodPLOS Computational Biology 4:e4.https://doi.org/10.1371/journal.pcbi.0040004
-
5-HT and mechanisms of defenceJournal of Psychopharmacology 5:305–316.https://doi.org/10.1177/026988119100500414
-
Tonic dopamine: opportunity costs and the control of response vigorPsychopharmacology 191:507–520.https://doi.org/10.1007/s00213-006-0502-4
-
Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward eventsJournal of Neurophysiology 102:3026–3037.https://doi.org/10.1152/jn.00507.2009
-
Phasic nociceptive responses in dorsal raphe serotonin neuronsFundamental & Clinical Pharmacology 22:119.https://doi.org/10.1111/j.1472-8206.2008.00601.x
Article and author information
Author details
Publication history
Copyright
© 2015, Dayan and Huys
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,900
- views
-
- 525
- downloads
-
- 34
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.
-
- Neuroscience
Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.