How scent and nectar influence floral antagonists and mutualists

  1. Danny Kessler
  2. Mario Kallenbach
  3. Celia Diezel
  4. Eva Rothe
  5. Mark Murdock
  6. Ian T Baldwin  Is a corresponding author
  1. Max-Planck Institute for Chemical Ecology, Germany
  2. University of Pittsburgh, United States

Abstract

Many plants attract and reward pollinators with floral scents and nectar, respectively, but these traits can also incur fitness costs as they also attract herbivores. This dilemma, common to most flowering plants, could be solved by not producing nectar and/or scent, thereby cheating pollinators. Both nectar and scent are highly variable in native populations of coyote tobacco, Nicotiana attenuata, with some producing no nectar at all, uncorrelated with the tobacco's main floral attractant, benzylacetone. By silencing benzylacetone biosynthesis and nectar production in all combinations by RNAi, we experimentally uncouple these floral rewards/attractrants and measure their costs/benefits in the plant's native habitat and experimental tents. Both scent and nectar increase outcrossing rates for three, separately-tested, pollinators and both traits increase oviposition by a hawkmoth herbivore, with nectar being more influential than scent. These results underscore that it makes little sense to study floral traits as if they only mediated pollination services.

Article and author information

Author details

  1. Danny Kessler

    Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  2. Mario Kallenbach

    Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  3. Celia Diezel

    Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  4. Eva Rothe

    Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
    Competing interests
    No competing interests declared.
  5. Mark Murdock

    University of Pittsburgh, Pennsylvania, United States
    Competing interests
    No competing interests declared.
  6. Ian T Baldwin

    Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
    For correspondence
    baldwin@ice.mpg.de
    Competing interests
    Ian T Baldwin, Senior editor, eLife.

Copyright

© 2015, Kessler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,034
    views
  • 981
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Danny Kessler
  2. Mario Kallenbach
  3. Celia Diezel
  4. Eva Rothe
  5. Mark Murdock
  6. Ian T Baldwin
(2015)
How scent and nectar influence floral antagonists and mutualists
eLife 4:e07641.
https://doi.org/10.7554/eLife.07641

Share this article

https://doi.org/10.7554/eLife.07641

Further reading

    1. Ecology
    2. Plant Biology
    Kelsey JRP Byers, Florian P Schiestl
    Insight

    Floral scents and nectar attract both pollinators and other animals that may reduce the plant's fitness, and therefore put flowering plants in a challenging situation.

    1. Developmental Biology
    2. Ecology
    Stav Talal, Jon F Harrison ... Arianne J Cease
    Research Article

    Organisms require dietary macronutrients in specific ratios to maximize performance, and variation in macronutrient requirements plays a central role in niche determination. Although it is well recognized that development and body size can have strong and predictable effects on many aspects of organismal function, we lack a predictive understanding of ontogenetic or scaling effects on macronutrient intake. We determined protein and carbohydrate intake throughout development on lab populations of locusts and compared to late instars of field populations. Self-selected protein:carbohydrate targets declined dramatically through ontogeny, due primarily to declines in mass-specific protein consumption rates which were highly correlated with declines in specific growth rates. Lab results for protein consumption rates partly matched results from field-collected locusts. However, field locusts consumed nearly double the carbohydrate, likely due to higher activity and metabolic rates. Combining our results with the available data for animals, both across species and during ontogeny, protein consumption scaled predictably and hypometrically, demonstrating a new scaling rule key for understanding nutritional ecology.