Abstract

In C. elegans, ablation of germline stem cells (GSCs) extends lifespan, but also increases fat accumulation and alters lipid metabolism, raising the intriguing question of how these effects might be related. Here we show that a lack of GSCs results in a broad transcriptional reprogramming, in which the conserved detoxification regulator SKN-1/Nrf increases stress resistance, proteasome activity, and longevity. SKN-1 also activates diverse lipid metabolism genes and reduces fat storage, thereby alleviating the increased fat accumulation caused by GSC absence. Surprisingly, SKN-1 is activated by signals from this fat, which appears to derive from unconsumed yolk that was produced for reproduction. We conclude that SKN-1 plays a direct role in maintaining lipid homeostasis, in which it is activated by lipids. This SKN-1 function may explain the importance of mammalian Nrf proteins in fatty liver disease, and suggests that particular endogenous or dietary lipids might promote health through SKN-1/Nrf.

Article and author information

Author details

  1. Michael J Steinbaugh

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sri Devi Narasimhan

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stacey Robida-Stubbs

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lorenza E Moronetti Mazzeo

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan M Dreyfuss

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. John M Hourihan

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Prashant Raghavan

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Theresa N Operaña

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Reza Esmaillie

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. T Keith Blackwell

    Research Division, Joslin Diabetes Center, Boston, United States
    For correspondence
    keith.blackwell@joslin.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Kang Shen, Howard Hughes Medical Institute, Stanford University, United States

Version history

  1. Received: March 31, 2015
  2. Accepted: July 9, 2015
  3. Accepted Manuscript published: July 21, 2015 (version 1)
  4. Version of Record published: August 19, 2015 (version 2)
  5. Version of Record updated: January 25, 2017 (version 3)

Copyright

© 2015, Steinbaugh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,162
    views
  • 1,458
    downloads
  • 165
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Steinbaugh
  2. Sri Devi Narasimhan
  3. Stacey Robida-Stubbs
  4. Lorenza E Moronetti Mazzeo
  5. Jonathan M Dreyfuss
  6. John M Hourihan
  7. Prashant Raghavan
  8. Theresa N Operaña
  9. Reza Esmaillie
  10. T Keith Blackwell
(2015)
Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence
eLife 4:e07836.
https://doi.org/10.7554/eLife.07836

Share this article

https://doi.org/10.7554/eLife.07836

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.