Neural Connectivity: Self-awareness in the retina

  1. Andrew M Garrett
  2. Robert W Burgess  Is a corresponding author
  1. Jackson Laboratory, United States

The idea that cell adhesion molecules regulate when and where connections form between different neurons has been in place for over 50 years (Sperry, 1963). However, it has become clear that other cues are important to prevent connections such as synapses forming between the branches of an individual neuron (Zipursky and Sanes, 2010). Now, in eLife, Dimitar Kostadinov and Joshua Sanes – both at Harvard University – highlight how this process, which is called self-avoidance, is vital for establishing the neuronal circuitry in the retina of the mammalian eye (Kostadinov and Sanes, 2015).

Self-avoidance can lead to several different arrangements in populations of neurons. For example, cells could be ‘tiled’ so that each cell occupies its own territory (Figure 1A). This presumably requires that the neurons in a given population are ‘repulsed’ by one another, and that the same is true for the branched nerve endings of each individual neuron: this arrangement maximizes the area covered by each cell and minimizes the number of self-crossings.

Three arrangements of neurons that require self-avoidance.

(A) Neurons may occupy discrete, non-overlapping territories; this requires repulsion between cells, and self-avoidance to prevent crossings within the branched nerve endings of a single cell. (B) Neurons may avoid their own branches, but be indifferent to those of their neighbors and intermingle without adhering and forming connections. (C) Finally, neurons with self-avoidance may nonetheless bind to their neighbors if they also have self/nonself discrimination. Kostadinov and Sanes studied starburst amacrine cells, which display this anatomy with both self-avoidance and self/nonself discrimination mediated by proteins called gamma-protocadherins.

FIGURE CREDIT: GRAPHICS COURTESY OF JESSE HAMMER

Alternatively, the branches of an individual cell could continue to repel each other, but the repulsion between the branches of different cells could be replaced with indifference. This would lead to some overlap between the different cells, but not the formation of connections between them (Figure 1B). In a third arrangement, the branches of a cell could both overlap with and readily bind to the branches of a neighboring cell (Figure 1C). This would require cells to display two phenomena: self-avoidance at the level of individual cells, and the ability to recognize branches belonging to neighboring cells. This is called ‘self/nonself discrimination’. Kostadinov and Sanes studied neurons called starburst amacrine cells (SACs) that display this type of self-avoidance with self/nonself discrimination.

These two phenomena require a diverse code of molecules that distinctly label each cell. Sanes and colleagues had previously demonstrated that proteins called gamma-protocadherins provide this code for SACs (Lefebvre et al., 2012). By combining different versions (or isoforms) of the protein produced from the gamma-protocadherin gene, cells can make thousand of different adhesive labels, and each label only tends to recognize and interact with other labels made from the same isoforms (Schreiner and Weiner, 2010). Molecules called Dscams perform a similar role in Drosophila (Zipursky and Grueber, 2013).

Now, Kostadinov and Sanes show the importance of self-avoidance and self/nonself discrimination in the development of neural circuits. First, they either eliminated the expression of all gamma-protocadherins, or allowed the expression of only a single working isoform. In the absence of all gamma-protocadherins, individual SACs began to form synapses with themselves, and formed fewer synapses with neighboring SACs than those in wild type retinas. Furthermore, Kostandinov and Sanes discovered that while many of the synapses that form between SACs are actually eliminated during the normal development of the retina, this loss is reduced if gamma-protocadherins are missing. Finally, and perhaps most significantly, the retinal circuitry failed to work properly because of the anatomical changes caused by the elimination of the gamma-protocadherins.

SACs contribute to a phenomenon called ‘direction selectivity’ that involves neurons in the retina only firing when they detect an object moving in a specific direction. The degree of direction selectivity in the cells that receive signals from the SACs was severely reduced when the SACs lacked gamma-protocadherins.

Direction selectivity was also reduced when SACs expressed a single gamma-protocadherin isoform. However, in this case, individual cells still exhibited self-avoidance and formed branched nerve endings. However, self/nonself discrimination was perturbed, which adversely affected the connections with neighboring SACs. As such, the loss of all gamma-protocadherins had a slightly different effect compared to the loss of all but one gamma-protocadherin. This likely reflects the fact that SACs with a single gamma-protocadherin look more like wild type cells than cells with none.

Kostandinov and Sanes also found that either eliminating all gamma-protocadherins, or all but one, did not affect the connections between the SACs and other cell types (which either send signals to, or receive signals from, the SACs). Therefore, the differences in direction selectivity reflect problems within the SAC network itself. Thus, these findings offer a clear and comprehensive characterization of the consequences of losing self-avoidance and self/nonself discrimination, in terms of both how the SACs connect with other cells, and how this affects the way in which they operate.

While the importance of self-avoidance and self/nonself discrimination in SACs is clear, many questions remain. First, how many cell types use gamma-protocadherins in this way? It has been suggested that cerebellar Purkinje cells might do so too (Lefebvre et al., 2012), but both SACs and Purkinje cells are rather specialized cells and may not represent a typical neuron. Furthermore, several other proteins can act as cues to promote self-avoidance and control the shaping of neural circuits (Fuerst et al., 2008; Matsuoka et al., 2012); could these molecules also be involved and could the same molecules have different roles in specific cell types? Finally, how do ‘adhesion molecules’ recognize each other in a way that, depending on the context, sometimes results in avoidance and not adhesion (Yamagata and Sanes, 2008; Schreiner and Weiner, 2010)? These and other questions have now become all the more important for understanding how the formation of neural circuits is optimized.

References

Article and author information

Author details

  1. Andrew M Garrett

    Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Robert W Burgess

    Jackson Laboratory, Bar Harbor, United States
    For correspondence
    robert.burgess@jax.org
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published:

Copyright

© 2015, Garrett and Burgess

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,305
    views
  • 158
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew M Garrett
  2. Robert W Burgess
(2015)
Neural Connectivity: Self-awareness in the retina
eLife 4:e10233.
https://doi.org/10.7554/eLife.10233

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.