Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay

  1. Myungjin Kim
  2. Erin Sandford
  3. Damian Gatica
  4. Yu Qiu
  5. Xu Liu
  6. Yumei Zheng
  7. Brenda A Schulman
  8. Jishu Xu
  9. Ian Semple
  10. Seung-Hyun Ro
  11. Boyoung Kim
  12. R Nehir Mavioglu
  13. Aslıhan Tolun
  14. Andras Jipa
  15. Szabolcs Takats
  16. Manuela Karpati
  17. Jun Z Li
  18. Zuhal Yapici
  19. Gabor Juhasz
  20. Jun Hee Lee
  21. Daniel J Klionsky
  22. Margit Burmeister  Is a corresponding author
  1. University of Michigan, United States
  2. St Jude Children's Research Hospital, United States
  3. University of Michigan-Ann Arbor, United States
  4. St. Jude Children's Research Hospital, United States
  5. Boğaziçi University, Turkey
  6. Eötvös Loránd University, Hungary
  7. Istanbul University, Turkey

Abstract

Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health.

Article and author information

Author details

  1. Myungjin Kim

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin Sandford

    Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Damian Gatica

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yu Qiu

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xu Liu

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yumei Zheng

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brenda A Schulman

    Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jishu Xu

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ian Semple

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Seung-Hyun Ro

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Boyoung Kim

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. R Nehir Mavioglu

    Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  13. Aslıhan Tolun

    Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  14. Andras Jipa

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  15. Szabolcs Takats

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  16. Manuela Karpati

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  17. Jun Z Li

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Zuhal Yapici

    Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  19. Gabor Juhasz

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  20. Jun Hee Lee

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Daniel J Klionsky

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Margit Burmeister

    Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, United States
    For correspondence
    margit@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Study protocols including written informed consents have been approved by the University of Michigan Institutional Review Board and the Boğaziçi University Institutional Review Board for Research with Human Participants.

Copyright

© 2016, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,516
    views
  • 1,489
    downloads
  • 153
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Myungjin Kim
  2. Erin Sandford
  3. Damian Gatica
  4. Yu Qiu
  5. Xu Liu
  6. Yumei Zheng
  7. Brenda A Schulman
  8. Jishu Xu
  9. Ian Semple
  10. Seung-Hyun Ro
  11. Boyoung Kim
  12. R Nehir Mavioglu
  13. Aslıhan Tolun
  14. Andras Jipa
  15. Szabolcs Takats
  16. Manuela Karpati
  17. Jun Z Li
  18. Zuhal Yapici
  19. Gabor Juhasz
  20. Jun Hee Lee
  21. Daniel J Klionsky
  22. Margit Burmeister
(2016)
Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay
eLife 5:e12245.
https://doi.org/10.7554/eLife.12245

Share this article

https://doi.org/10.7554/eLife.12245

Further reading

    1. Genetics and Genomics
    Xiuling Cao, Xiang Wu ... Beidong Liu
    Research Article

    Due to proteostasis stress induced by aging or disease, misfolded proteins can form toxic intermediate species of aggregates and eventually mature into less toxic inclusion bodies (IBs). Here, using a yeast imaging-based screen, we identified 84 potential synphilin-1 (SY1) IB regulators and isolated the conserved sphingolipid metabolic components in the most enriched groups. Furthermore, we show that, in both yeast cells and mammalian cells, SY1 IBs are associated with mitochondria. Pharmacological inhibition of the sphingolipid metabolism pathway or knockout of its key genes results in a delayed IB maturation and increased SY1 cytotoxicity. We postulate that SY1 IB matures by association with the mitochondrion membrane, and that sphingolipids stimulate the maturation via their membrane-modulating function and thereby protecting cells from SY1 cytotoxicity. Our findings identify a conserved cellular component essential for IB maturation and suggest a mechanism by which cells may detoxify the pathogenic protein aggregates through forming mitochondrion-associated IBs.

    1. Genetics and Genomics
    Jorge Blanco Mendana, Margaret Donovan ... Daryl M Gohl
    Tools and Resources

    Advances in single-cell sequencing technologies have provided novel insights into the dynamics of gene expression and cellular heterogeneity within tissues and have enabled the construction of transcriptomic cell atlases. However, linking anatomical information to transcriptomic data and positively identifying the cell types that correspond to gene expression clusters in single-cell sequencing data sets remains a challenge. We describe a straightforward genetic barcoding approach that takes advantage of the powerful genetic tools in Drosophila to allow in vivo tagging of defined cell populations. This method, called Targeted Genetically-Encoded Multiplexing (TaG-EM), involves inserting a DNA barcode just upstream of the polyadenylation site in a Gal4-inducible UAS-GFP construct so that the barcode sequence can be read out during single-cell sequencing, labeling a cell population of interest. By creating many such independently barcoded fly strains, TaG-EM enables positive identification of cell types in cell atlas projects, identification of multiplet droplets, and barcoding of experimental timepoints, conditions, and replicates. Furthermore, we demonstrate that TaG-EM barcodes can be read out using next-generation sequencing to facilitate population-scale behavioral measurements. Thus, TaG-EM has the potential to enable large-scale behavioral screens in addition to improving the ability to multiplex and reliably annotate single-cell transcriptomic experiments.