Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay

  1. Myungjin Kim
  2. Erin Sandford
  3. Damian Gatica
  4. Yu Qiu
  5. Xu Liu
  6. Yumei Zheng
  7. Brenda A Schulman
  8. Jishu Xu
  9. Ian Semple
  10. Seung-Hyun Ro
  11. Boyoung Kim
  12. R Nehir Mavioglu
  13. Aslıhan Tolun
  14. Andras Jipa
  15. Szabolcs Takats
  16. Manuela Karpati
  17. Jun Z Li
  18. Zuhal Yapici
  19. Gabor Juhasz
  20. Jun Hee Lee
  21. Daniel J Klionsky
  22. Margit Burmeister  Is a corresponding author
  1. University of Michigan, United States
  2. St Jude Children's Research Hospital, United States
  3. University of Michigan-Ann Arbor, United States
  4. St. Jude Children's Research Hospital, United States
  5. Boğaziçi University, Turkey
  6. Eötvös Loránd University, Hungary
  7. Istanbul University, Turkey

Abstract

Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health.

Article and author information

Author details

  1. Myungjin Kim

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin Sandford

    Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Damian Gatica

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yu Qiu

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xu Liu

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yumei Zheng

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brenda A Schulman

    Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jishu Xu

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ian Semple

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Seung-Hyun Ro

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Boyoung Kim

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. R Nehir Mavioglu

    Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  13. Aslıhan Tolun

    Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  14. Andras Jipa

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  15. Szabolcs Takats

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  16. Manuela Karpati

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  17. Jun Z Li

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Zuhal Yapici

    Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  19. Gabor Juhasz

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  20. Jun Hee Lee

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Daniel J Klionsky

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Margit Burmeister

    Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, United States
    For correspondence
    margit@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Noboru Mizushima, The University of Tokyo, Japan

Ethics

Human subjects: Study protocols including written informed consents have been approved by the University of Michigan Institutional Review Board and the Boğaziçi University Institutional Review Board for Research with Human Participants.

Version history

  1. Received: October 11, 2015
  2. Accepted: January 13, 2016
  3. Accepted Manuscript published: January 26, 2016 (version 1)
  4. Version of Record published: March 1, 2016 (version 2)

Copyright

© 2016, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,318
    views
  • 1,473
    downloads
  • 140
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Myungjin Kim
  2. Erin Sandford
  3. Damian Gatica
  4. Yu Qiu
  5. Xu Liu
  6. Yumei Zheng
  7. Brenda A Schulman
  8. Jishu Xu
  9. Ian Semple
  10. Seung-Hyun Ro
  11. Boyoung Kim
  12. R Nehir Mavioglu
  13. Aslıhan Tolun
  14. Andras Jipa
  15. Szabolcs Takats
  16. Manuela Karpati
  17. Jun Z Li
  18. Zuhal Yapici
  19. Gabor Juhasz
  20. Jun Hee Lee
  21. Daniel J Klionsky
  22. Margit Burmeister
(2016)
Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay
eLife 5:e12245.
https://doi.org/10.7554/eLife.12245

Share this article

https://doi.org/10.7554/eLife.12245

Further reading

    1. Genetics and Genomics
    Can Hu, Xue-Ting Zhu ... Jin-Qiu Zhou
    Research Article

    Telomeres, which are chromosomal end structures, play a crucial role in maintaining genome stability and integrity in eukaryotes. In the baker’s yeast Saccharomyces cerevisiae, the X- and Y’-elements are subtelomeric repetitive sequences found in all 32 and 17 telomeres, respectively. While the Y’-elements serve as a backup for telomere functions in cells lacking telomerase, the function of the X-elements remains unclear. This study utilized the S. cerevisiae strain SY12, which has three chromosomes and six telomeres, to investigate the role of X-elements (as well as Y’-elements) in telomere maintenance. Deletion of Y’-elements (SY12), X-elements (SY12XYΔ+Y), or both X- and Y’-elements (SY12XYΔ) did not impact the length of the terminal TG1-3 tracks or telomere silencing. However, inactivation of telomerase in SY12, SY12XYΔ+Y, and SY12XYΔ cells resulted in cellular senescence and the generation of survivors. These survivors either maintained their telomeres through homologous recombination-dependent TG1-3 track elongation or underwent microhomology-mediated intra-chromosomal end-to-end joining. Our findings indicate the non-essential role of subtelomeric X- and Y’-elements in telomere regulation in both telomerase-proficient and telomerase-null cells and suggest that these elements may represent remnants of S. cerevisiae genome evolution. Furthermore, strains with fewer or no subtelomeric elements exhibit more concise telomere structures and offer potential models for future studies in telomere biology.

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.