Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay

  1. Myungjin Kim
  2. Erin Sandford
  3. Damian Gatica
  4. Yu Qiu
  5. Xu Liu
  6. Yumei Zheng
  7. Brenda A Schulman
  8. Jishu Xu
  9. Ian Semple
  10. Seung-Hyun Ro
  11. Boyoung Kim
  12. R Nehir Mavioglu
  13. Aslıhan Tolun
  14. Andras Jipa
  15. Szabolcs Takats
  16. Manuela Karpati
  17. Jun Z Li
  18. Zuhal Yapici
  19. Gabor Juhasz
  20. Jun Hee Lee
  21. Daniel J Klionsky
  22. Margit Burmeister  Is a corresponding author
  1. University of Michigan, United States
  2. St Jude Children's Research Hospital, United States
  3. University of Michigan-Ann Arbor, United States
  4. St. Jude Children's Research Hospital, United States
  5. Boğaziçi University, Turkey
  6. Eötvös Loránd University, Hungary
  7. Istanbul University, Turkey

Abstract

Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health.

Article and author information

Author details

  1. Myungjin Kim

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin Sandford

    Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Damian Gatica

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yu Qiu

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xu Liu

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Yumei Zheng

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Brenda A Schulman

    Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jishu Xu

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ian Semple

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Seung-Hyun Ro

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Boyoung Kim

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. R Nehir Mavioglu

    Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  13. Aslıhan Tolun

    Department of Molecular Biology and Genetics, Boğaziçi University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  14. Andras Jipa

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  15. Szabolcs Takats

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  16. Manuela Karpati

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  17. Jun Z Li

    Department of Human Genetics, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Zuhal Yapici

    Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  19. Gabor Juhasz

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  20. Jun Hee Lee

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Daniel J Klionsky

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Margit Burmeister

    Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, United States
    For correspondence
    margit@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Study protocols including written informed consents have been approved by the University of Michigan Institutional Review Board and the Boğaziçi University Institutional Review Board for Research with Human Participants.

Copyright

© 2016, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,539
    views
  • 1,489
    downloads
  • 153
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Myungjin Kim
  2. Erin Sandford
  3. Damian Gatica
  4. Yu Qiu
  5. Xu Liu
  6. Yumei Zheng
  7. Brenda A Schulman
  8. Jishu Xu
  9. Ian Semple
  10. Seung-Hyun Ro
  11. Boyoung Kim
  12. R Nehir Mavioglu
  13. Aslıhan Tolun
  14. Andras Jipa
  15. Szabolcs Takats
  16. Manuela Karpati
  17. Jun Z Li
  18. Zuhal Yapici
  19. Gabor Juhasz
  20. Jun Hee Lee
  21. Daniel J Klionsky
  22. Margit Burmeister
(2016)
Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay
eLife 5:e12245.
https://doi.org/10.7554/eLife.12245

Share this article

https://doi.org/10.7554/eLife.12245

Further reading

    1. Genetics and Genomics
    Ximena Corso Diaz, Xulong Liang ... Anand Swaroop
    Research Article

    RNA-binding proteins (RBPs) perform diverse functions including the regulation of chromatin dynamics and the coupling of transcription with RNA processing. However, our understanding of their actions in mammalian neurons remains limited. Using affinity purification, yeast-two-hybrid and proximity ligation assays, we identified interactions of multiple RBPs with neural retina leucine (NRL) zipper, a Maf-family transcription factor critical for retinal rod photoreceptor development and function. In addition to splicing, many NRL-interacting RBPs are associated with R-loops, which form during transcription and increase during photoreceptor maturation. Focusing on DHX9 RNA helicase, we demonstrate that its expression is modulated by NRL and that the NRL–DHX9 interaction is positively influenced by R-loops. ssDRIP-Seq analysis reveals both stranded and unstranded R-loops at distinct genomic elements, characterized by active and inactive epigenetic signatures and enriched at neuronal genes. NRL binds to both types of R-loops, suggesting an epigenetically independent function. Our findings suggest additional functions of NRL during transcription and highlight complex interactions among transcription factors, RBPs, and R-loops in regulating photoreceptor gene expression in the mammalian retina.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Eric V Strobl, Eric Gamazon
    Research Article

    Root causal gene expression levels – or root causal genes for short – correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high-throughput perturbations with single-cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.