1. Chromosomes and Gene Expression
Download icon

HIV: The two sides of Tat

  1. Matjaz Barboric  Is a corresponding author
  2. Koh Fujinaga  Is a corresponding author
  1. University of Helsinki, Finland
  2. University of California, San Francisco, United States
  • Cited 4
  • Views 1,460
  • Annotations
Cite this article as: eLife 2016;5:e12686 doi: 10.7554/eLife.12686


A virus protein called Tat plays a dual role in HIV infection by regulating the expression of genes belonging to the virus and genes belonging to the host cells.

Main text

Like all viruses, human immunodeficiency virus (HIV) must engage with the cells of its host to be able to replicate. Compared to other retroviruses, this interaction is particularly complex in the case of HIV because its genome encodes many proteins that take advantage of various cell processes and counteract host defenses. One of these proteins is called transactivator of transcription (Tat) and it is essential for the expression of HIV genes in host cells. Now, in eLife, Ivan D’Orso of the University of Texas Southwestern Medical Center (UTSW) and colleagues – including Jonathan Reeder and Youn-Tae Kwak of UTSW as joint first authors – demonstrate that Tat can also regulate the expression of many host genes (Reeder et al., 2015).

In the first stage of gene expression, a gene is “transcribed” to make messenger RNA (mRNA) by an enzyme called RNA polymerase II (Pol II). After Pol II binds to the promoter region of a gene and starts to make an mRNA molecule, the enzyme stops due to the actions of pause-inducing factors. The ability of Pol II to continue to transcribe the gene (in a step called elongation) depends on a cellular protein complex called P-TEFb (short for positive transcription elongation factor b). In the case of HIV, the situation is very similar. Pol II pauses soon after initiating from the promoter of the viral genome producing only short mRNAs. However, Tat can override this transcriptional block by recruiting P-TEFb to Pol II via a RNA stem-loop structure called the transactivation response element, which is found at the beginning of all virus mRNAs (Ott et al., 2011).

While most researchers have focused on understanding how Tat activates the transcription of HIV, some studies have demonstrated that Tat also alters the expression of host genes to promote the production and spread of HIV. For example, Tat manipulates immune T cells in its host to allow the virus to infect and replicate in them (Li et al., 1997, Huang et al., 1998). Moreover, Tat induces the expression of chemokines that attract uninfected T cells and macrophages, facilitating expansion of HIV in the host (Izmailova et al., 2003). On the other side, Tat can also contribute to the depletion of T cells during AIDS progression by up-regulating cellular pro-apoptotic genes (Kim et al., 2010). Finally, Tat is able to repress the transcription of several genes encoding receptors of the innate immune system responses. However, we still do not have a comprehensive view of the host genes that Tat targets, or how Tat alters the transcription of these genes.

Reeder, Kwak, D'Orso and two colleagues – Ryan McNamara (UTSW) and Christian Forst (Icahn School of Medicine at Mount Sinai) – took on this challenge by analyzing T cells that produced the Tat protein with a series of genome-wide approaches. They identified close to 3000 sites in the human genome that are occupied by Tat. The presence of Tat changed the expression of about 2000 host genes, and almost quarter of these were classified as direct targets because Tat bound to their promoters or to other sites in the genes. About half of these direct targets were up-regulated by Tat, while the rest were down-regulated. Further experiments revealed that for a subset of the target genes, Tat is able to regulate either the initiation or elongation by Pol II.

Next, Reeder, Kwak et al. investigated how Tat can modulate different steps in the transcription of host genes. For example, to stimulate or inhibit the start of transcription, Tat regulates the loading Pol II to cellular promoters. Of note, at the majority of up-regulated genes, Tat appears to facilitate Pol II promoter presence from sites within gene bodies by inducing DNA looping. However, to regulate elongation, Tat can either promote or prevent the recruitment of P-TEFb to specific genes. Importantly, Reeder, Kwak et al.’s further findings suggest that, unlike what happens with viral genes, Tat does not seem to rely on RNA structures similar to the HIV transactivation response element to regulate target host genes. Instead, Tat co-opts some of the master transcriptional regulators of its host that also control cellular gene transcription in uninfected cells.

In agreement with an earlier report (Marban et al., 2011), Reeder, Kwak et al. found that binding sites for the master regulator called ETS1 were, among others, most frequent near the genomic regions that Tat occupies. Tat interacts with ETS1 protein and knocking down the ETS1 gene abolished the recruitment of Tat to some target genes, thus preventing it from being able to modulate their transcription. Moreover, ETS1 motifs are found at both up-regulated and down-regulated Tat targets, underscoring that gene-specific circumstances determine the effect of Tat. Curiously, HIV itself contains an ETS1 binding site upstream of its promoter, and this allows ETS1 to stimulate viral gene expression in collaboration with other transcription factors of the cell (Sieweke et al., 1998; Yang et al., 2009).

The report by Reeder, Kwak et al. arguably represents the most thorough characterization of the role of Tat on host gene expression. While making sure that the HIV genome is transcribed, Tat also fine-tunes two critical steps in the expression of specific cellular genes. Is this tweaking of host gene transcription a necessary survival strategy for HIV, or merely a side effect of the presence of potent transcriptional regulator Tat in the cell nucleus? Or has this possible side effect been transformed through evolution into a winning strategy of the virus? Whatever the correct answer might be, Reeder, Kwak et al. confirmed that the expression of many Tat target genes changed as expected during HIV infection. Moreover, many of these genes appear to be involved in signaling pathways and biological processes that could help HIV to spread in the host.

This study raises further questions. Does Tat modulate the expression of hundreds of previously identified host proteins that interact with HIV gene products or are critical to replication of the virus? Is Tat also capable of regulating the termination of transcription at host genes? How exactly do the interactions between Tat, master transcriptional regulators like ETS1, and host proteins lead to changes in gene expression? Further, has HIV devised one strategy to promote very high levels of transcription of its own genome, while exploiting cellular transcriptional regulators to provoke only modest (but beneficial) changes in the expression of host genes? Answers to these and other questions shall advance our understanding of how and why HIV Tat reprograms its host.


    1. Huang L
    2. Bosch I
    3. Hofmann W
    4. Sodroski J
    5. Pardee AB
    Tat protein induces human immunodeficiency virus type 1 (hIV-1) coreceptors and promotes infection with both macrophage-tropic and t-lymphotropic HIV-1 strains
    Journal of Virology 72:8952–8960.

Article and author information

Author details

  1. Matjaz Barboric

    Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
  2. Koh Fujinaga

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: January 19, 2016 (version 1)


© 2016, Barboric et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,460
    Page views
  • 219
  • 4

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Xiaolu Wei et al.
    Research Article Updated

    Large blocks of tandemly repeated DNAs—satellite DNAs (satDNAs)—play important roles in heterochromatin formation and chromosome segregation. We know little about how satDNAs are regulated; however, their misregulation is associated with genomic instability and human diseases. We use the Drosophila melanogaster germline as a model to study the regulation of satDNA transcription and chromatin. Here we show that complex satDNAs (>100-bp repeat units) are transcribed into long noncoding RNAs and processed into piRNAs (PIWI interacting RNAs). This satDNA piRNA production depends on the Rhino-Deadlock-Cutoff complex and the transcription factor Moonshiner—a previously described non-canonical pathway that licenses heterochromatin-dependent transcription of dual-strand piRNA clusters. We show that this pathway is important for establishing heterochromatin at satDNAs. Therefore, satDNAs are regulated by piRNAs originating from their own genomic loci. This novel mechanism of satDNA regulation provides insight into the role of piRNA pathways in heterochromatin formation and genome stability.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Inigo Urrutia-Irazabal et al.
    Research Article Updated

    The PcrA/UvrD helicase binds directly to RNA polymerase (RNAP) but the structural basis for this interaction and its functional significance have remained unclear. In this work, we used biochemical assays and hydrogen-deuterium exchange coupled to mass spectrometry to study the PcrA-RNAP complex. We find that PcrA binds tightly to a transcription elongation complex in a manner dependent on protein:protein interaction with the conserved PcrA C-terminal Tudor domain. The helicase binds predominantly to two positions on the surface of RNAP. The PcrA C-terminal domain engages a conserved region in a lineage-specific insert within the β subunit which we identify as a helicase interaction motif present in many other PcrA partner proteins, including the nucleotide excision repair factor UvrB. The catalytic core of the helicase binds near the RNA and DNA exit channels and blocking PcrA activity in vivo leads to the accumulation of R-loops. We propose a role for PcrA as an R-loop suppression factor that helps to minimize conflicts between transcription and other processes on DNA including replication.