1. Cell Biology
  2. Chromosomes and Gene Expression
Download icon

Chromosome Segregation: Freewheeling sisters cause problems

  1. Takashi Akera
  2. Michael A Lampson  Is a corresponding author
  1. University of Pennsylvania, United States
Insight
Cite this article as: eLife 2016;5:e13788 doi: 10.7554/eLife.13788
1 figure

Figures

Normal and abnormal meiosis I in human oocytes.

Before meiosis, the 46 chromosomes are duplicated such that each consists of two sister chromatids. During meiosis I, the homologous chromosomes then partner up into 23 pairs. A single pair of homologous chromosomes is shown (top), and the two chromosomes are connected via crossovers called “chiasmata”. The kinetochores (shown as black semi-circles) on sister chromatids are fused together and become attached to microtubules (shown in green) emanating from the same pole of the spindle (not shown). This geometry helps the kinetochores of pairs of homologous chromosomes to be captured by microtubules from opposite spindle poles, and pulled to opposite sides of the cell. Zielinska et al. occasionally observed abnormal configurations of chromosomes in human oocytes. Often the sister kinetochores were split and ended up attached to spindle microtubules from different spindle poles (bottom left). This allowed the pair of homologous chromosomes (or "bivalent”) to rotate. Also, the connections between homologous chromosomes were commonly compromised, which sometimes led to premature separation of the bivalent (bottom right).

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)