1. Biochemistry and Chemical Biology
Download icon

The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS patient brains

  1. Erin G Conlon
  2. Lei Lu
  3. Aarti Sharma
  4. Takashi Yamazaki
  5. Timothy Tang
  6. Neil A Shneider  Is a corresponding author
  7. James L Manley  Is a corresponding author
  1. Columbia University, United States
  2. Columbia University Medical Center, United States
Research Article
  • Cited 142
  • Views 5,831
  • Annotations
Cite this article as: eLife 2016;5:e17820 doi: 10.7554/eLife.17820

Abstract

An expanded GGGGCC hexanucleotide in C9ORF72 (C9) is the most frequent known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). It has been proposed that expanded transcripts adopt G-quadruplex (G-Q) structures and associate with proteins, but whether this occurs and contributes to disease is unknown. Here we show first that the protein that predominantly associates with GGGGCC repeat RNA in vitro is the splicing factor hnRNP H, and that this interaction is linked to G-Q formation. We then show that G-Q RNA foci are more abundant in C9 ALS patient fibroblasts and astrocytes compared to those without the expansion, and more frequently colocalize with hnRNP H. Importantly, we demonstrate dysregulated splicing of multiple known hnRNP H-target transcripts in C9 patient brains, which correlates with elevated insoluble hnRNP H/G-Q aggregates. Together, our data implicate C9 expansion-mediated sequestration of hnRNP H as a significant contributor to neurodegeneration in C9 ALS/FTD.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Erin G Conlon

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  2. Lei Lu

    Department of Neurology, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  3. Aarti Sharma

    Department of Neurology, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4907-2174
  4. Takashi Yamazaki

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  5. Timothy Tang

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  6. Neil A Shneider

    Department of Neurology, Columbia University Medical Center, New York, United States
    For correspondence
    ns327@columbia.edu
    Competing interests
    No competing interests declared.
  7. James L Manley

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    jlm2@columbia.edu
    Competing interests
    James L Manley, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8341-1459

Funding

NIH Office of the Director (Training Grant)

  • Erin G Conlon

NIH Office of the Director (RO1)

  • James L Manley

NIH Office of the Director (R35 GM 118136)

  • James L Manley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, including consent to publish, was obtained for human derived fibroblast and astrocyte lines used in this study by the IRB of Columbia University under protocols #AAAB0483 and #AAAC1257. For fibroblasts, written consent was given by the patients, and for astrocytes, written consent was given by the families of the deceased. Human tissue was donated for research purposes by the next of kin.

Reviewing Editor

  1. Douglas L Black, University of California, Los Angeles, United States

Publication history

  1. Received: May 13, 2016
  2. Accepted: September 8, 2016
  3. Accepted Manuscript published: September 13, 2016 (version 1)
  4. Accepted Manuscript updated: September 14, 2016 (version 2)
  5. Accepted Manuscript updated: September 17, 2016 (version 3)
  6. Accepted Manuscript updated: September 21, 2016 (version 4)
  7. Version of Record published: October 4, 2016 (version 5)
  8. Version of Record updated: October 7, 2016 (version 6)
  9. Version of Record updated: October 10, 2016 (version 7)

Copyright

© 2016, Conlon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,831
    Page views
  • 1,624
    Downloads
  • 142
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Bruk Mensa et al.
    Research Article Updated

    Transmembrane signaling proteins couple extracytosolic sensors to cytosolic effectors. Here, we examine how binding of Mg2+ to the sensor domain of an E. coli two component histidine kinase (HK), PhoQ, modulates its cytoplasmic kinase domain. We use cysteine-crosslinking and reporter-gene assays to simultaneously and independently probe the signaling state of PhoQ’s sensor and autokinase domains in a set of over 30 mutants. Strikingly, conservative single-site mutations distant from the sensor or catalytic site strongly influence PhoQ’s ligand-sensitivity as well as the magnitude and direction of the signal. Data from 35 mutants are explained by a semi-empirical three-domain model in which the sensor, intervening HAMP, and catalytic domains can adopt kinase-promoting or inhibiting conformations that are in allosteric communication. The catalytic and sensor domains intrinsically favor a constitutively ‘kinase-on’ conformation, while the HAMP domain favors the ‘off’ state; when coupled, they create a bistable system responsive to physiological concentrations of Mg2+. Mutations alter signaling by locally modulating domain intrinsic equilibrium constants and interdomain couplings. Our model suggests signals transmit via interdomain allostery rather than propagation of a single concerted conformational change, explaining the diversity of signaling structural transitions observed in individual HK domains.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Keith F DeLuca et al.
    Tools and Resources

    Antibodies are indispensable tools used for a large number of applications in both foundational and translational bioscience research; however, there are drawbacks to using traditional antibodies generated in animals. These include a lack of standardization leading to problems with reproducibility, high costs of antibodies purchased from commercial sources, and ethical concerns regarding the large number of animals used to generate antibodies. To address these issues, we have developed practical methodologies and tools for generating low-cost, high-yield preparations of recombinant monoclonal antibodies and antibody fragments directed to protein epitopes from primary sequences. We describe these methods here, as well as approaches to diversify monoclonal antibodies, including customization of antibody species specificity, generation of genetically encoded small antibody fragments, and conversion of single chain antibody fragments (e.g. scFv) into full-length, bivalent antibodies. This study focuses on antibodies directed to epitopes important for mitosis and kinetochore function; however, the methods and reagents described here are applicable to antibodies and antibody fragments for use in any field.