1. Biochemistry and Chemical Biology
Download icon

The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS patient brains

  1. Erin G Conlon
  2. Lei Lu
  3. Aarti Sharma
  4. Takashi Yamazaki
  5. Timothy Tang
  6. Neil A Shneider  Is a corresponding author
  7. James L Manley  Is a corresponding author
  1. Columbia University, United States
  2. Columbia University Medical Center, United States
Research Article
  • Cited 142
  • Views 5,831
  • Annotations
Cite this article as: eLife 2016;5:e17820 doi: 10.7554/eLife.17820

Abstract

An expanded GGGGCC hexanucleotide in C9ORF72 (C9) is the most frequent known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). It has been proposed that expanded transcripts adopt G-quadruplex (G-Q) structures and associate with proteins, but whether this occurs and contributes to disease is unknown. Here we show first that the protein that predominantly associates with GGGGCC repeat RNA in vitro is the splicing factor hnRNP H, and that this interaction is linked to G-Q formation. We then show that G-Q RNA foci are more abundant in C9 ALS patient fibroblasts and astrocytes compared to those without the expansion, and more frequently colocalize with hnRNP H. Importantly, we demonstrate dysregulated splicing of multiple known hnRNP H-target transcripts in C9 patient brains, which correlates with elevated insoluble hnRNP H/G-Q aggregates. Together, our data implicate C9 expansion-mediated sequestration of hnRNP H as a significant contributor to neurodegeneration in C9 ALS/FTD.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Erin G Conlon

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  2. Lei Lu

    Department of Neurology, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  3. Aarti Sharma

    Department of Neurology, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4907-2174
  4. Takashi Yamazaki

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  5. Timothy Tang

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  6. Neil A Shneider

    Department of Neurology, Columbia University Medical Center, New York, United States
    For correspondence
    ns327@columbia.edu
    Competing interests
    No competing interests declared.
  7. James L Manley

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    jlm2@columbia.edu
    Competing interests
    James L Manley, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8341-1459

Funding

NIH Office of the Director (Training Grant)

  • Erin G Conlon

NIH Office of the Director (RO1)

  • James L Manley

NIH Office of the Director (R35 GM 118136)

  • James L Manley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, including consent to publish, was obtained for human derived fibroblast and astrocyte lines used in this study by the IRB of Columbia University under protocols #AAAB0483 and #AAAC1257. For fibroblasts, written consent was given by the patients, and for astrocytes, written consent was given by the families of the deceased. Human tissue was donated for research purposes by the next of kin.

Reviewing Editor

  1. Douglas L Black, University of California, Los Angeles, United States

Publication history

  1. Received: May 13, 2016
  2. Accepted: September 8, 2016
  3. Accepted Manuscript published: September 13, 2016 (version 1)
  4. Accepted Manuscript updated: September 14, 2016 (version 2)
  5. Accepted Manuscript updated: September 17, 2016 (version 3)
  6. Accepted Manuscript updated: September 21, 2016 (version 4)
  7. Version of Record published: October 4, 2016 (version 5)
  8. Version of Record updated: October 7, 2016 (version 6)
  9. Version of Record updated: October 10, 2016 (version 7)

Copyright

© 2016, Conlon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,831
    Page views
  • 1,624
    Downloads
  • 142
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Thomas S McAlear, Susanne Bechstedt
    Research Article

    Cells increase microtubule dynamics to make large rearrangements to their microtubule cytoskeleton during cell division. Changes in microtubule dynamics are essential for the formation and function of the mitotic spindle, and misregulation can lead to aneuploidy and cancer. Using in vitro reconstitution assays we show that the mitotic spindle protein Cytoskeleton-Associated Protein 2 (CKAP2) has a strong effect on nucleation of microtubules by lowering the critical tubulin concentration 100-fold. CKAP2 increases the apparent rate constant ka of microtubule growth by 50-fold and increases microtubule growth rates. In addition, CKAP2 strongly suppresses catastrophes. Our results identify CKAP2 as the most potent microtubule growth factor to date. These finding help explain CKAP2's role as an important spindle protein, proliferation marker, and oncogene.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Andrea Loreto et al.
    Research Article Updated

    Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.