The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS patient brains

  1. Erin G Conlon
  2. Lei Lu
  3. Aarti Sharma
  4. Takashi Yamazaki
  5. Timothy Tang
  6. Neil A Shneider  Is a corresponding author
  7. James L Manley  Is a corresponding author
  1. Columbia University, United States
  2. Columbia University Medical Center, United States

Abstract

An expanded GGGGCC hexanucleotide in C9ORF72 (C9) is the most frequent known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). It has been proposed that expanded transcripts adopt G-quadruplex (G-Q) structures and associate with proteins, but whether this occurs and contributes to disease is unknown. Here we show first that the protein that predominantly associates with GGGGCC repeat RNA in vitro is the splicing factor hnRNP H, and that this interaction is linked to G-Q formation. We then show that G-Q RNA foci are more abundant in C9 ALS patient fibroblasts and astrocytes compared to those without the expansion, and more frequently colocalize with hnRNP H. Importantly, we demonstrate dysregulated splicing of multiple known hnRNP H-target transcripts in C9 patient brains, which correlates with elevated insoluble hnRNP H/G-Q aggregates. Together, our data implicate C9 expansion-mediated sequestration of hnRNP H as a significant contributor to neurodegeneration in C9 ALS/FTD.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Erin G Conlon

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  2. Lei Lu

    Department of Neurology, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
  3. Aarti Sharma

    Department of Neurology, Columbia University Medical Center, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4907-2174
  4. Takashi Yamazaki

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  5. Timothy Tang

    Department of Biological Sciences, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  6. Neil A Shneider

    Department of Neurology, Columbia University Medical Center, New York, United States
    For correspondence
    ns327@columbia.edu
    Competing interests
    No competing interests declared.
  7. James L Manley

    Department of Biological Sciences, Columbia University, New York, United States
    For correspondence
    jlm2@columbia.edu
    Competing interests
    James L Manley, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8341-1459

Funding

NIH Office of the Director (Training Grant)

  • Erin G Conlon

NIH Office of the Director (RO1)

  • James L Manley

NIH Office of the Director (R35 GM 118136)

  • James L Manley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, including consent to publish, was obtained for human derived fibroblast and astrocyte lines used in this study by the IRB of Columbia University under protocols #AAAB0483 and #AAAC1257. For fibroblasts, written consent was given by the patients, and for astrocytes, written consent was given by the families of the deceased. Human tissue was donated for research purposes by the next of kin.

Copyright

© 2016, Conlon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,459
    views
  • 1,819
    downloads
  • 236
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin G Conlon
  2. Lei Lu
  3. Aarti Sharma
  4. Takashi Yamazaki
  5. Timothy Tang
  6. Neil A Shneider
  7. James L Manley
(2016)
The C9ORF72 GGGGCC expansion forms RNA G-quadruplex inclusions and sequesters hnRNP H to disrupt splicing in ALS patient brains
eLife 5:e17820.
https://doi.org/10.7554/eLife.17820

Share this article

https://doi.org/10.7554/eLife.17820

Further reading

    1. Biochemistry and Chemical Biology
    Adrian CD Fuchs
    Research Article

    The protein ligase Connectase can be used to fuse proteins to small molecules, solid carriers, or other proteins. Compared to other protein ligases, it offers greater substrate specificity, higher catalytic efficiency, and catalyzes no side reactions. However, its reaction is reversible, resulting in only 50% fusion product from two equally abundant educts. Here, we present a simple method to reliably obtain 100% fusion product in 1:1 conjugation reactions. This method is efficient for protein-protein or protein-peptide fusions at the N- or C-termini. It enables the generation of defined and completely labeled antibody conjugates with one fusion partner on each chain. The reaction requires short incubation times with small amounts of enzyme and is effective even at low substrate concentrations and at low temperatures. With these characteristics, it presents a valuable new tool for bioengineering.

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.