Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states

  1. Meghna Sobti
  2. Callum Smits
  3. Andrew SW Wong
  4. Robert Ishmukhametov
  5. Daniela Stock
  6. Sara Sandin
  7. Alastair G Stewart  Is a corresponding author
  1. The Victor Chang Cardiac Research Institute, Australia
  2. Nanyang Technological University, Singapore
  3. University of Oxford, United Kingdom

Abstract

A molecular model that provides a framework for interpreting the wealth of functional information obtained on the E. coli F-ATP synthase has been generated using cryo-electron microscopy. Three different states that relate to rotation of the enzyme were observed, with the central stalk's ε subunit in an extended autoinhibitory conformation in all three states. The Fo motor comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side of the membrane indicate the entry and exit channels for protons. The proton translocating subunit contains near parallel helices inclined by ~30° to the membrane, a feature now synonymous with rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that bifurcates towards the membrane with its helices separating to embrace subunit a from two sides.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Meghna Sobti

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Callum Smits

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew SW Wong

    NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Ishmukhametov

    Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniela Stock

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Sara Sandin

    NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Alastair G Stewart

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    For correspondence
    a.stewart@victorchang.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2070-6030

Funding

National Health and Medical Research Council (1004620)

  • Daniela Stock

National Health and Medical Research Council (1109961)

  • Daniela Stock

National Health and Medical Research Council (1090408)

  • Alastair G Stewart

National Health and Medical Research Council (1022143)

  • Daniela Stock

National Health and Medical Research Council (1047004)

  • Daniela Stock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Sobti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,953
    views
  • 971
    downloads
  • 123
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meghna Sobti
  2. Callum Smits
  3. Andrew SW Wong
  4. Robert Ishmukhametov
  5. Daniela Stock
  6. Sara Sandin
  7. Alastair G Stewart
(2016)
Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states
eLife 5:e21598.
https://doi.org/10.7554/eLife.21598

Share this article

https://doi.org/10.7554/eLife.21598

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.