CDK-regulated dimerization of M18BP1 on a Mis18 hexamer is necessary for CENP-A loading

  1. Dongqing Pan
  2. Kerstin Klare
  3. Arsen Petrovic
  4. Annika Take
  5. Kai Walstein
  6. Priyanka Singh
  7. Arnaud Rondelet
  8. Alex W Bird
  9. Andrea Musacchio  Is a corresponding author
  1. Max-Planck Institute of Molecular Physiology, Germany
  2. Max Planck Institute of Molecular Physiology, Germany

Abstract

Centromeres are unique chromosomal loci that promote the assembly of kinetochores, macromolecular complexes that bind spindle microtubules during mitosis. In most organisms, centromeres lack defined genetic features. Rather, they are specified epigenetically by a centromere-specific histone H3 variant, CENP-A. The Mis18 complex, comprising the Mis18α:Mis18β subcomplex and M18BP1, is crucial for CENP-A homeostasis. It recruits the CENP-A specific chaperone HJURP to centromeres and primes it for CENP-A loading. We report here that a specific arrangement of Yippie domains in a human Mis18α:Mis18β 4:2 hexamer binds two copies of M18BP1 through M18BP1's 140 N-terminal residues. Phosphorylation by Cyclin-dependent kinase 1 (CDK1) at two conserved sites in this region destabilizes binding to Mis18α:Mis18β, limiting complex formation to the G1 phase of the cell cycle. Using an improved viral 2A peptide co-expression strategy, we demonstrate that CDK1 controls Mis18 complex recruitment to centromeres by regulating oligomerization of M18BP1 through the Mis18α:Mis18β scaffold.

Article and author information

Author details

  1. Dongqing Pan

    Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  2. Kerstin Klare

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  3. Arsen Petrovic

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  4. Annika Take

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  5. Kai Walstein

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  6. Priyanka Singh

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
  7. Arnaud Rondelet

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5816-4137
  8. Alex W Bird

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1061-0799
  9. Andrea Musacchio

    Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    For correspondence
    andrea.musacchio@mpi-dortmund.mpg.de
    Competing interests
    Andrea Musacchio, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2362-8784

Funding

European Research Council (AdG 669686 RECEPIANCE)

  • Andrea Musacchio

Deutsche Forschungsgemeinschaft (Collaborative Research Centre (CRC) 1093)

  • Andrea Musacchio

Alexander von Humboldt-Stiftung (Postdoctoral fellowship)

  • Dongqing Pan

Alexander von Humboldt-Stiftung (Postdoctoral fellowship)

  • Priyanka Singh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Pan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,687
    views
  • 715
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dongqing Pan
  2. Kerstin Klare
  3. Arsen Petrovic
  4. Annika Take
  5. Kai Walstein
  6. Priyanka Singh
  7. Arnaud Rondelet
  8. Alex W Bird
  9. Andrea Musacchio
(2017)
CDK-regulated dimerization of M18BP1 on a Mis18 hexamer is necessary for CENP-A loading
eLife 6:e23352.
https://doi.org/10.7554/eLife.23352

Share this article

https://doi.org/10.7554/eLife.23352

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.