Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation

  1. Javier Periz
  2. Jamie Whitelaw
  3. Clare Harding
  4. Simon Gras
  5. Mario Igor Del Rosario Minina
  6. Fernanda Latorre-Barragan
  7. Leandro Lemgruber
  8. Madita Alice Reimer
  9. Robert Insall
  10. Aoife Heaslip  Is a corresponding author
  11. Markus Meissner  Is a corresponding author
  1. University of Glasgow, United Kingdom
  2. Cancer Research UK Beatson Institute, United Kingdom
  3. University of Vermont, United States

Abstract

Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available Actin-Chromobody® was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics.

Article and author information

Author details

  1. Javier Periz

    Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Jamie Whitelaw

    Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Clare Harding

    Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Simon Gras

    Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Mario Igor Del Rosario Minina

    Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Fernanda Latorre-Barragan

    Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Leandro Lemgruber

    Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Madita Alice Reimer

    Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert Insall

    Cancer Research UK Beatson Institute, Bearsden, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Aoife Heaslip

    Department of Molecular Physiology and Biophysics Burlington, University of Vermont, Vermont, United States
    For correspondence
    aoife.heaslip@uconn.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Markus Meissner

    Division of Infection and Immunity, Institute of Biomedical Life Sciences, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    markus.meissner@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4816-5221

Funding

Wellcome (087582/Z/08/Z)

  • Markus Meissner

H2020 European Research Council (ERC-2012-StG 309255-EndoTox)

  • Markus Meissner

Wellcome (WT103972AIA)

  • Clare Harding

National Institute for Health Research (AI121885)

  • Aoife Heaslip

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Periz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,444
    views
  • 748
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Javier Periz
  2. Jamie Whitelaw
  3. Clare Harding
  4. Simon Gras
  5. Mario Igor Del Rosario Minina
  6. Fernanda Latorre-Barragan
  7. Leandro Lemgruber
  8. Madita Alice Reimer
  9. Robert Insall
  10. Aoife Heaslip
  11. Markus Meissner
(2017)
Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation
eLife 6:e24119.
https://doi.org/10.7554/eLife.24119

Share this article

https://doi.org/10.7554/eLife.24119

Further reading

  1. A parasite called Toxoplasma gondii builds a scaffold inside human and other animal cells to help it multiply and cause disease.

    1. Cell Biology
    Xiaojiao Hua, Chen Zhao ... Yan Zhou
    Research Article

    The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 – the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.