Serine ADP-ribosylation reversal by the hydrolase ARH3

  1. Ivan Ahel  Is a corresponding author
  2. Pietro Fontana
  3. Juan José Bonfiglio
  4. Luca Palazzo
  5. Edward Bartlett
  6. Ivan Matic  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Max Planck Institute for Biology of Ageing, Germany

Abstract

ADP-ribosylation (ADPr) is a posttranslational modification (PTM) of proteins that controls many cellular processes, including DNA repair, transcription, chromatin regulation and mitosis. A number of proteins catalyse the transfer and hydrolysis of ADPr, and also specify how and when the modification is conjugated to the targets. We recently discovered a new form of ADPr that is attached to serine residues in target proteins (Ser-ADPr) and showed that this PTM is specifically made by PARP1/HPF1 and PARP2/HPF1 complexes. In this work, we found by quantitative proteomics that histone Ser-ADPr is reversible in cells during response to DNA damage. By screening for the hydrolase that is responsible for the reversal of Ser-ADPr, we identified ARH3/ADPRHL2 as capable of efficiently and specifically removing Ser-ADPr of histones and other proteins. We further showed that Ser-ADPr is a major PTM in cells after DNA damage and that this signalling is dependent on ARH3.

Article and author information

Author details

  1. Ivan Ahel

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    ivan.ahel@path.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9446-3756
  2. Pietro Fontana

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Juan José Bonfiglio

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7767-0799
  4. Luca Palazzo

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5556-5549
  5. Edward Bartlett

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Ivan Matic

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    imatic@age.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (101794)

  • Ivan Ahel

Cancer Research UK (C35050/A22284)

  • Ivan Ahel

Deutsche Forschungsgemeinschaft (EXC 229)

  • Ivan Matic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Ahel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,385
    views
  • 877
    downloads
  • 198
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ivan Ahel
  2. Pietro Fontana
  3. Juan José Bonfiglio
  4. Luca Palazzo
  5. Edward Bartlett
  6. Ivan Matic
(2017)
Serine ADP-ribosylation reversal by the hydrolase ARH3
eLife 6:e28533.
https://doi.org/10.7554/eLife.28533

Share this article

https://doi.org/10.7554/eLife.28533

Further reading

    1. Biochemistry and Chemical Biology
    Giuliana Katharina Moeller, Gyula Timinszky
    Insight

    The modification of serines by molecules of ADP-ribose plays an important role in signaling that the DNA in a cell has been damaged and needs to be repaired.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Flavia A Zanetti, Ignacio Fernandez ... Laura Ruth Delgui
    Research Article

    Birnaviruses are a group of double-stranded RNA (dsRNA) viruses infecting birds, fish, and insects. Early endosomes (EE) constitute the platform for viral replication. Here, we study the mechanism of birnaviral targeting of EE membranes. Using the Infectious Bursal Disease Virus (IBDV) as a model, we validate that the viral protein 3 (VP3) binds to phosphatidylinositol-3-phosphate (PI3P) present in EE membranes. We identify the domain of VP3 involved in PI3P-binding, named P2 and localized in the core of VP3, and establish the critical role of the arginine at position 200 (R200), conserved among all known birnaviruses. Mutating R200 abolishes viral replication. Moreover, we propose a two-stage modular mechanism for VP3 association with EE. Firstly, the carboxy-terminal region of VP3 adsorbs on the membrane, and then the VP3 core reinforces the membrane engagement by specifically binding PI3P through its P2 domain, additionally promoting PI3P accumulation.