Serine ADP-ribosylation reversal by the hydrolase ARH3

  1. Ivan Ahel  Is a corresponding author
  2. Pietro Fontana
  3. Juan José Bonfiglio
  4. Luca Palazzo
  5. Edward Bartlett
  6. Ivan Matic  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Max Planck Institute for Biology of Ageing, Germany

Abstract

ADP-ribosylation (ADPr) is a posttranslational modification (PTM) of proteins that controls many cellular processes, including DNA repair, transcription, chromatin regulation and mitosis. A number of proteins catalyse the transfer and hydrolysis of ADPr, and also specify how and when the modification is conjugated to the targets. We recently discovered a new form of ADPr that is attached to serine residues in target proteins (Ser-ADPr) and showed that this PTM is specifically made by PARP1/HPF1 and PARP2/HPF1 complexes. In this work, we found by quantitative proteomics that histone Ser-ADPr is reversible in cells during response to DNA damage. By screening for the hydrolase that is responsible for the reversal of Ser-ADPr, we identified ARH3/ADPRHL2 as capable of efficiently and specifically removing Ser-ADPr of histones and other proteins. We further showed that Ser-ADPr is a major PTM in cells after DNA damage and that this signalling is dependent on ARH3.

Article and author information

Author details

  1. Ivan Ahel

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    ivan.ahel@path.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9446-3756
  2. Pietro Fontana

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Juan José Bonfiglio

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7767-0799
  4. Luca Palazzo

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5556-5549
  5. Edward Bartlett

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Ivan Matic

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    imatic@age.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (101794)

  • Ivan Ahel

Cancer Research UK (C35050/A22284)

  • Ivan Ahel

Deutsche Forschungsgemeinschaft (EXC 229)

  • Ivan Matic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Ahel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,414
    views
  • 888
    downloads
  • 201
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ivan Ahel
  2. Pietro Fontana
  3. Juan José Bonfiglio
  4. Luca Palazzo
  5. Edward Bartlett
  6. Ivan Matic
(2017)
Serine ADP-ribosylation reversal by the hydrolase ARH3
eLife 6:e28533.
https://doi.org/10.7554/eLife.28533

Share this article

https://doi.org/10.7554/eLife.28533

Further reading

    1. Biochemistry and Chemical Biology
    Giuliana Katharina Moeller, Gyula Timinszky
    Insight

    The modification of serines by molecules of ADP-ribose plays an important role in signaling that the DNA in a cell has been damaged and needs to be repaired.

    1. Biochemistry and Chemical Biology
    Nelson García-Vázquez, Tania J González-Robles ... Michele Pagano
    Research Article

    In healthy cells, cyclin D1 is expressed during the G1 phase of the cell cycle, where it activates CDK4 and CDK6. Its dysregulation is a well-established oncogenic driver in numerous human cancers. The cancer-related function of cyclin D1 has been primarily studied by focusing on the phosphorylation of the retinoblastoma (RB) gene product. Here, using an integrative approach combining bioinformatic analyses and biochemical experiments, we show that GTSE1 (G-Two and S phases expressed protein 1), a protein positively regulating cell cycle progression, is a previously unrecognized substrate of cyclin D1–CDK4/6 in tumor cells overexpressing cyclin D1 during G1 and subsequent phases. The phosphorylation of GTSE1 mediated by cyclin D1–CDK4/6 inhibits GTSE1 degradation, leading to high levels of GTSE1 across all cell cycle phases. Functionally, the phosphorylation of GTSE1 promotes cellular proliferation and is associated with poor prognosis within a pan-cancer cohort. Our findings provide insights into cyclin D1’s role in cell cycle control and oncogenesis beyond RB phosphorylation.