1. Biochemistry and Chemical Biology
Download icon

Serine ADP-ribosylation reversal by the hydrolase ARH3

  1. Pietro Fontana
  2. Juan José Bonfiglio
  3. Luca Palazzo
  4. Edward Bartlett
  5. Ivan Matic  Is a corresponding author
  6. Ivan Ahel  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Max Planck Institute for Biology of Ageing, Germany
Research Article
  • Cited 101
  • Views 3,203
  • Annotations
Cite this article as: eLife 2017;6:e28533 doi: 10.7554/eLife.28533

Abstract

ADP-ribosylation (ADPr) is a posttranslational modification (PTM) of proteins that controls many cellular processes, including DNA repair, transcription, chromatin regulation and mitosis. A number of proteins catalyse the transfer and hydrolysis of ADPr, and also specify how and when the modification is conjugated to the targets. We recently discovered a new form of ADPr that is attached to serine residues in target proteins (Ser-ADPr) and showed that this PTM is specifically made by PARP1/HPF1 and PARP2/HPF1 complexes. In this work, we found by quantitative proteomics that histone Ser-ADPr is reversible in cells during response to DNA damage. By screening for the hydrolase that is responsible for the reversal of Ser-ADPr, we identified ARH3/ADPRHL2 as capable of efficiently and specifically removing Ser-ADPr of histones and other proteins. We further showed that Ser-ADPr is a major PTM in cells after DNA damage and that this signalling is dependent on ARH3.

Article and author information

Author details

  1. Pietro Fontana

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Juan José Bonfiglio

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7767-0799
  3. Luca Palazzo

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5556-5549
  4. Edward Bartlett

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Ivan Matic

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    For correspondence
    imatic@age.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  6. Ivan Ahel

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    ivan.ahel@path.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9446-3756

Funding

Wellcome (101794)

  • Ivan Ahel

Cancer Research UK (C35050/A22284)

  • Ivan Ahel

Deutsche Forschungsgemeinschaft (EXC 229)

  • Ivan Matic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ivan Dikic, Goethe University Frankfurt, Germany

Publication history

  1. Received: May 11, 2017
  2. Accepted: June 23, 2017
  3. Accepted Manuscript published: June 26, 2017 (version 1)
  4. Accepted Manuscript updated: June 29, 2017 (version 2)
  5. Version of Record published: August 10, 2017 (version 3)

Copyright

© 2017, Fontana et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,203
    Page views
  • 685
    Downloads
  • 101
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Giuliana Katharina Moeller, Gyula Timinszky
    Insight

    The modification of serines by molecules of ADP-ribose plays an important role in signaling that the DNA in a cell has been damaged and needs to be repaired.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Zdravka Daneva et al.
    Research Article Updated

    Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels. We hypothesized that endothelial Panx1–ATP–TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Cα (PKCα), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCα, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1–P2Y2R–TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.