1. Computational and Systems Biology
  2. Neuroscience
Download icon

Deep Learning: Branching into brains

  1. Adam Shai
  2. Matthew Evan Larkum  Is a corresponding author
  1. Stanford University, United States
  2. Humboldt University, Germany
Insight
  • Cited 1
  • Views 5,765
  • Annotations
Cite this article as: eLife 2017;6:e33066 doi: 10.7554/eLife.33066

Abstract

What can artificial intelligence learn from neuroscience, and vice versa?

Main text

Deep learning is a subfield of machine learning that focuses on training artificial systems to find useful representations of inputs. Recent advances in deep learning have propelled the once arcane field of artificial neural networks into mainstream technology (LeCun et al., 2015). Deep neural networks now regularly outperform humans on difficult problems like face recognition and games such as Go (He et al., 2015; Silver et al., 2017). Traditional neuroscientists have also taken an interest in deep learning because it seemed initially that there were telling analogies between deep networks and the human brain. Nevertheless, there is a growing impression that the field might be approaching a new ‘wall’ and that deep networks and the brain are intrinsically different.

Chief among these differences is the widely held belief that backpropagation, the learning algorithm at the heart of modern artificial neural networks, is biologically implausible. This issue is so central to current thinking about the relationship between artificial and real brains that it has its own name: the credit assignment problem. The error in the output of a neural network (that is, the difference between the output and the 'correct' answer) can be reported or 'backpropagated' to any connection in the network, no matter where it is, to teach the network how to refine the output. But for a biological brain, neurons only receive information from the neurons they are connected to, making credit assignment a real problem. How does the brain blindly adjust the strength of the connections between neurons that are far removed from the output of the network? In the absence of a solution, we may be forced to conclude that deep learning and brains are incompatible after all.

Now, in eLife, Jordan Guerguiev, Timothy Lillicrap and Blake Richards propose a biologically inspired solution to the credit assignment problem (Guerguiev et al., 2017). Central to their model is the structure of the pyramidal neuron, which is the most prevalent cell type in the cortex (the outer layer of the brain). Pyramidal neurons have been a source of aesthetic pleasure and interesting research questions for neuroscientists for decades. Each neuron is shaped like a tree with a trunk reaching up and dividing into branches near the surface of the brain as if extending toward a source of energy or information. Can it be that, while most cells of the body have relatively simple shapes, evolution has seen to it that cortical neurons are so intricately shaped as to be apparently impractical?

Guerguiev et al. – who are based at the University of Toronto, the Canadian Institute for Advanced Research, and DeepMind – report that this impractical shape has an advantage: the long branched structure means that error signals at one end of the neuron and sensory input at the other end are kept separate from each other. These sources of information can then be brought together at the right moment in order to find the best solution to a problem.

As Guerguiev et al. note, many facts about real neurons and the structure of the cortex turn out to be just right to find optimal solutions to problems. For instance, the bottoms of cortical neurons are located just where they need to be to receive signals about sensory input, while the tops of these neurons are well placed to receive feedback error signals (Cauller, 1995; Larkum, 2013). The key to this design principle seems to be to keep these distinct information streams largely independent. At the same time, ion channels under the control of a host of other nearby neurons process and gate the transfer of information within the neuron.

Taking inspiration from these facts Guerguiev et al. implement a deep network with units that have different compartments, just like real neurons, that can separate sensory input from feedback error signals. These units have all the information they need to know in order to nudge the network toward the desired output. Guerguiev et al. prove formally that this approach is mathematically sound. Moreover, their new, biologically plausible deep network is able to perform well on a task to identify handwritten numbers, and does so by creating what are referred to as hierarchical representations. This phenomenon refers to the increasingly complex nature of the responses of the network's layers, commonly found in more traditional deep learning models, and in the sensory cortices of biological brains.

Doubtless, there will be more twists and turns to this story as more biological details are incorporated into the model. For instance the brain also faces a time-based credit assignment problem (Friedrich et al., 2011; Gütig, 2016). Guerguiev et al. admit that this network does not outperform non-biologically derived deep networks – yet. Nevertheless, the model they present paves the way for future work that links biological networks to machine learning. The hope is that this can be a two-way process, in which insights from the brain can be used to improve artificial intelligence, and insights from artificial intelligence can be used to reveal how the brain operates.

References

  1. Conference
    1. He K
    2. Zhang X
    3. Ren S
    4. Sun J
    (2015)
    Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    Proceedings of the IEEE International Conference on Computer Vision. pp. 1026–1034.

Article and author information

Author details

  1. Adam Shai

    Adam Shai is in the Department of Biology, Stanford University, Stanford, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1833-3906
  2. Matthew Evan Larkum

    Matthew Evan Larkum is at the Neurocure Cluster of Excellence, Humboldt University of Berlin, Germany

    For correspondence
    matthew.larkum@hu-berlin.de
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9799-2656

Publication history

  1. Version of Record published: December 5, 2017 (version 1)

Copyright

© 2017, Shai et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,765
    Page views
  • 639
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Menghan Liu et al.
    Research Article Updated

    Over-accumulation of oxalate in humans may lead to nephrolithiasis and nephrocalcinosis. Humans lack endogenous oxalate degradation pathways (ODP), but intestinal microbes can degrade oxalate using multiple ODPs and protect against its absorption. The exact oxalate-degrading taxa in the human microbiota and their ODP have not been described. We leverage multi-omics data (>3000 samples from >1000 subjects) to show that the human microbiota primarily uses the type II ODP, rather than type I. Furthermore, among the diverse ODP-encoding microbes, an oxalate autotroph, Oxalobacter formigenes, dominates this function transcriptionally. Patients with inflammatory bowel disease (IBD) frequently suffer from disrupted oxalate homeostasis and calcium oxalate nephrolithiasis. We show that the enteric oxalate level is elevated in IBD patients, with highest levels in Crohn’s disease (CD) patients with both ileal and colonic involvement consistent with known nephrolithiasis risk. We show that the microbiota ODP expression is reduced in IBD patients, which may contribute to the disrupted oxalate homeostasis. The specific changes in ODP expression by several important taxa suggest that they play distinct roles in IBD-induced nephrolithiasis risk. Lastly, we colonize mice that are maintained in the gnotobiotic facility with O. formigenes, using either a laboratory isolate or an isolate we cultured from human stools, and observed a significant reduction in host fecal and urine oxalate levels, supporting our in silico prediction of the importance of the microbiome, particularly O. formigenes in host oxalate homeostasis.

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Luke Stephen Tain et al.
    Research Article

    Reduced activity of the insulin/IGF signalling network increases health during ageing in multiple species. Diverse and tissue-specific mechanisms drive the health improvement. Here, we performed tissue-specific transcriptional and proteomic profiling of long-lived Drosophila dilp2-3,5 mutants, and identified tissue-specific regulation of >3600 transcripts and >3700 proteins. Most expression changes were regulated post-transcriptionally in the fat body, and only in mutants infected with the endosymbiotic bacteria, Wolbachia pipientis, which increases their lifespan. Bioinformatic analysis identified reduced co-translational ER targeting of secreted and membrane-associated proteins and increased DNA damage/repair response proteins. Accordingly, age-related DNA damage and genome instability were lower in fat body of the mutant, and overexpression of a minichromosome maintenance protein subunit extended lifespan. Proteins involved in carbohydrate metabolism showed altered expression in the mutant intestine, and gut-specific overexpression of a lysosomal mannosidase increased autophagy, gut homeostasis, and lifespan. These processes are candidates for combatting ageing-related decline in other organisms.