IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission

  1. Jonas Klinkhammer
  2. Daniel Schnepf
  3. Liang Ye
  4. Marilena Schwaderlapp
  5. Hans Henrik Gad
  6. Rune Hartmann
  7. Dominique Garcin
  8. Tanel Mahlakõiv
  9. Peter Staeheli  Is a corresponding author
  1. Medical Center University of Freiburg, Germany
  2. Aarhus University, Denmark
  3. University of Geneva, Switzerland

Abstract

Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1-/-) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1-/- mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jonas Klinkhammer

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Schnepf

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Liang Ye

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Marilena Schwaderlapp

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Hans Henrik Gad

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8449-1115
  6. Rune Hartmann

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Dominique Garcin

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1556-897X
  8. Tanel Mahlakõiv

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter Staeheli

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    For correspondence
    peter.staeheli@uniklinik-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7057-6177

Funding

Deutsche Forschungsgemeinschaft

  • Peter Staeheli

Novo Nordisk

  • Rune Hartmann

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

  • Dominique Garcin

European Commission

  • Peter Staeheli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were handled in accordance with guidelines of the Federation for Laboratory Animal Science Associations and the national animal welfare body. Animal experiments were performed in compliance with the German animal protection laws and were approved by the university's animal welfare committee (Regierungspräsidium Freiburg; permit G-15/59).

Copyright

© 2018, Klinkhammer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,642
    views
  • 947
    downloads
  • 207
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonas Klinkhammer
  2. Daniel Schnepf
  3. Liang Ye
  4. Marilena Schwaderlapp
  5. Hans Henrik Gad
  6. Rune Hartmann
  7. Dominique Garcin
  8. Tanel Mahlakõiv
  9. Peter Staeheli
(2018)
IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission
eLife 7:e33354.
https://doi.org/10.7554/eLife.33354

Share this article

https://doi.org/10.7554/eLife.33354

Further reading

    1. Immunology and Inflammation
    Alannah Lejeune, Chunyi Zhou ... Ken Cadwell
    Research Article

    Gastrointestinal (GI) colonization by methicillin-resistant Staphylococcus aureus (MRSA) is associated with a high risk of transmission and invasive disease in vulnerable populations. The immune and microbial factors that permit GI colonization remain unknown. Male sex is correlated with enhanced Staphylococcus aureus nasal carriage, skin and soft tissue infections, and bacterial sepsis. Here, we established a mouse model of sexual dimorphism during GI colonization by MRSA. Our results show that in contrast to male mice that were susceptible to persistent colonization, female mice rapidly cleared MRSA from the GI tract following oral inoculation in a manner dependent on the gut microbiota. This colonization resistance displayed by female mice was mediated by an increase in IL-17A+ CD4+ T cells (Th17) and dependent on neutrophils. Ovariectomy of female mice increased MRSA burden, but gonadal female mice that have the Y chromosome retained enhanced Th17 responses and colonization resistance. Our study reveals a novel intersection between sex and gut microbiota underlying colonization resistance against a major widespread pathogen.

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Colleen A Maillie, Kiana Golden ... Marco Mravic
    Research Article

    A potent class of HIV-1 broadly neutralizing antibodies (bnAbs) targets the envelope glycoprotein’s membrane proximal exposed region (MPER) through a proposed mechanism where hypervariable loops embed into lipid bilayers and engage headgroup moieties alongside the epitope. We address the feasibility and determinant molecular features of this mechanism using multi-scale modeling. All-atom simulations of 4E10, PGZL1, 10E8, and LN01 docked onto HIV-like membranes consistently form phospholipid complexes at key complementarity-determining region loop sites, solidifying that stable and specific lipid interactions anchor bnAbs to membrane surfaces. Ancillary protein-lipid contacts reveal surprising contributions from antibody framework regions. Coarse-grained simulations effectively capture antibodies embedding into membranes. Simulations estimating protein-membrane interaction strength for PGZL1 variants along an inferred maturation pathway show bilayer affinity is evolved and correlates with neutralization potency. The modeling demonstrated here uncovers insights into lipid participation in antibodies’ recognition of membrane proteins and highlights antibody features to prioritize in vaccine design.