IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission

  1. Jonas Klinkhammer
  2. Daniel Schnepf
  3. Liang Ye
  4. Marilena Schwaderlapp
  5. Hans Henrik Gad
  6. Rune Hartmann
  7. Dominique Garcin
  8. Tanel Mahlakõiv
  9. Peter Staeheli  Is a corresponding author
  1. Medical Center University of Freiburg, Germany
  2. Aarhus University, Denmark
  3. University of Geneva, Switzerland

Abstract

Host factors restricting the transmission of respiratory viruses are poorly characterized. We analyzed the contribution of type I and type III interferon (IFN) using a mouse model in which the virus is selectively administered to the upper airways, mimicking a natural respiratory virus infection. Mice lacking functional IFN-λ receptors (Ifnlr1-/-) no longer restricted virus dissemination from the upper airways to the lungs. Ifnlr1-/- mice shed significantly more infectious virus particles via the nostrils and transmitted the virus much more efficiently to naïve contacts compared with wild-type mice or mice lacking functional type I IFN receptors. Prophylactic treatment with IFN-α or IFN-λ inhibited initial virus replication in all parts of the respiratory tract, but only IFN-λ conferred long-lasting antiviral protection in the upper airways and blocked virus transmission. Thus, IFN-λ has a decisive and non-redundant function in the upper airways that greatly limits transmission of respiratory viruses to naïve contacts.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jonas Klinkhammer

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Schnepf

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Liang Ye

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Marilena Schwaderlapp

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Hans Henrik Gad

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8449-1115
  6. Rune Hartmann

    Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Dominique Garcin

    Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1556-897X
  8. Tanel Mahlakõiv

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter Staeheli

    Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
    For correspondence
    peter.staeheli@uniklinik-freiburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7057-6177

Funding

Deutsche Forschungsgemeinschaft

  • Peter Staeheli

Novo Nordisk

  • Rune Hartmann

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

  • Dominique Garcin

European Commission

  • Peter Staeheli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were handled in accordance with guidelines of the Federation for Laboratory Animal Science Associations and the national animal welfare body. Animal experiments were performed in compliance with the German animal protection laws and were approved by the university's animal welfare committee (Regierungspräsidium Freiburg; permit G-15/59).

Copyright

© 2018, Klinkhammer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,562
    views
  • 938
    downloads
  • 201
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonas Klinkhammer
  2. Daniel Schnepf
  3. Liang Ye
  4. Marilena Schwaderlapp
  5. Hans Henrik Gad
  6. Rune Hartmann
  7. Dominique Garcin
  8. Tanel Mahlakõiv
  9. Peter Staeheli
(2018)
IFN-λ prevents influenza virus spread from the upper airways to the lungs and limits virus transmission
eLife 7:e33354.
https://doi.org/10.7554/eLife.33354

Share this article

https://doi.org/10.7554/eLife.33354

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Patsy R Tomlinson, Rachel G Knox ... Robert K Semple
    Research Article

    PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.

    1. Immunology and Inflammation
    Shih-Wen Huang, Yein-Gei Lai ... Nan-Shih Liao
    Research Article

    Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors. Using a spontaneous metastasis mouse model of MHC-I+ breast cancer, we found that transfer of IL-15/IL-12-conditioned syngeneic NK cells after primary tumor resection promoted long-term survival of mice with low metastatic burden and induced a tumor-specific protective T cell response that is essential for the therapeutic effect. Furthermore, NK cell transfer augments activation of conventional dendritic cells (cDCs), Foxp3-CD4+ T cells and stem cell-like CD8+ T cells in metastatic lungs, to which IFN-γ of the transferred NK cells contributes significantly. These results imply direct interactions between transferred NK cells and endogenous cDCs to enhance T cell activation. We conducted an investigator-initiated clinical trial of autologous NK cell therapy in six patients with advanced cancer and observed that the NK cell therapy was safe and showed signs of effectiveness. These findings indicate that autologous NK cell therapy is effective in treating established low burden metastases of MHC-I+ tumor cells by activating the cDC-T cell axis at metastatic sites.