Influenza virus: Interfering with transmission
The evolutionary arms race between viruses and their vertebrate hosts is biased by the different rates at which each can adapt. Slowly evolving vertebrate genomes cannot keep up with the rapid mutations employed by viral genomes to avoid the host’s defenses. One strategy that vertebrates use to counter this apparent disadvantage involves a group of proteins called interferons that infected cells produce when they sense a virus. Named for their ability to ‘interfere’ with influenza virus replication (Isaacs and Lindenmann, 1957), interferons switch on a battery of hundreds of genes, many of which encode antiviral proteins (Mostafavi et al., 2016).
Interferons can be classed into different families, each of which interacts with a different receptor. The most widely studied family is the IFNαβ family, which interacts with the IFNαβ receptor (McNab et al., 2015). The IFNλ family of interferons, which interact with the IFNλ receptor, were discovered more recently (Wack et al., 2015). Now, in eLife, Peter Staeheli of the University of Freiburg and co-workers – including Jonas Klinkhammer and Daniel Schnepf as joint first authors – report a unique role for IFNλ in virus transmission (Klinkhammer et al., 2018).
IFNαβ and IFNλ activate largely the same genes, but their receptors are not found on all cell types. Therefore, the distribution of IFNαβ and IFNλ receptors could be behind the different biological effects of each interferon family. Epithelia are thought to express both receptors, and therefore the two interferon families should both have the same effects in the epithelial cells that line the surfaces of organs, including the airways. A number of findings support this. First, the influenza virus triggers the airway epithelia of mice lacking one type of receptor to transcribe practically the same sets of genes as those transcribed in the epithelia of normal mice: however, epithelia that lack both interferon receptors have large 'holes' in their transcriptional profile and allow the virus to replicate extensively (Crotta et al., 2013). Second, mice that are deficient in one type of receptor experience a mild increase in their risk of developing disease when infected, whereas mice that lack both types are far more severely afflicted (Mordstein et al., 2008).
To show that IFNλ has unique roles in epithelial cells Klinkhammer et al. – who are based at Freiburg, Aarhus University and the University of Geneva – infected mice with a strain of influenza virus in a small volume of fluid. This mimics the ways that infections spread between humans better than the larger volumes of fluid used in most studies. Using this technique, infection was initially limited to the epithelia lining the nasopharyngeal cavities.
IFNλ receptor-deficient mice infected in this way had a far greater number of virus particles in their upper airways than mice that were deficient in the IFNαβ receptor. This suggests that nasopharyngeal epithelia may be more responsive as a whole to IFNλ than to IFNαβ, or that some cells in these epithelia express only the IFNλ receptor. However, IFNαβ receptors become increasingly important when mice are infected with larger droplets, which brings the virus further down into the lungs, or during an ongoing infection if the virus succeeds in spreading further down along the airways into the lung.
The efficiency with which viruses are transmitted from infected to uninfected individuals makes the difference between minor outbreaks (such as sporadic cases of H5N1) and pandemics (such as the H1N1 pandemic of 2009). A lack of a genetically versatile animal model had made it difficult to study how the genome of the host affects transmission frequency, but this changed when it was shown that H3N2 influenza viruses transmit efficiently between mice (Edenborough et al., 2012).
Using this model Klinkhammer et al. show that IFNλ determines transmission efficiency by controlling the number of virus particles at the uppermost end of the respiratory tract: the higher the number of viruses in the nasopharyngeal space, the higher the likelihood that they would be shed out of the nose and thus be able to infect a new host. In line with its role further down the respiratory tract, IFNαβ has much less influence on how well the virus spreads between individuals.
The results also have clinical relevance. Klinkhammer et al. demonstrate here that IFNλ acts more strongly than IFNαβ and has longer-lasting effects on virus transmission, while others have shown that it also produces comparably minor inflammatory side effects (Davidson et al., 2016; Galani et al., 2017). Treatment with an IFNλ spray may therefore benefit patients with influenza, as well as anyone they encounter during their illness.
There had been previous indications that IFNλ has a unique role in controlling infections. Last year it was reported that IFNλ appeared to be the first interferon, and sometimes the only interferon, required to control the influenza virus early in infections and when using low doses of the virus (Galani et al., 2017). There also seems to be a parallel situation in the small intestine where IFNλ, and not IFNαβ, determines the outcome of some viral infections (Mahlakõiv et al., 2015; Pott et al., 2011; Figure 1). Furthermore, at both sites, some epithelial cells appear to respond only to IFNλ. What are these cells? Are there more sites in the body where this response pattern is found? Do these cells express a unique pattern of receptors, or is their response determined by other mechanisms? Like all important studies, the work presented by Klinkhammer et al. answers some questions while also raising many others.

Local dominance of different interferon families in viral control.
Although the IFNαβ (red) and IFNλ (blue) families of interferons activate largely similar sets of genes in response to a viral infection, their importance in fighting off infections varies in different parts of the body. The color of the organs of the mouse indicates which interferon family dominates there. The relative heights of the color-coded bars in the figure represent the extent to which each interferon family is responsible for fighting off viruses in different parts of the mouse. Top bars: In systemic infections of the mouse organism, the IFNαβ family of interferons contributes more to the control of viruses than the IFNλ family. Bottom, left: Klinkhammer et al. show that IFNλ is important for controlling the transmission of the influenza virus from infected mice to new hosts. Bottom, middle: IFNλ is also the interferon family that predominantly controls the spread of viruses in the uppermost part of the respiratory tract. However, further down the respiratory tract (represented by moving left to right along the bars), IFNαβ increasingly controls how viral infections develop. Bottom, right: Previous studies had shown that IFNλ is important for controlling viral infections in the intestines.
References
-
IFNλ is a potent anti-influenza therapeutic without the inflammatory side effects of IFNα treatmentEMBO Molecular Medicine 8:1099–1112.https://doi.org/10.15252/emmm.201606413
-
Virus interference. I. The interferonProceedings of the Royal Society B: Biological Sciences 147:258–267.https://doi.org/10.1098/rspb.1957.0048
-
Type I interferons in infectious diseaseNature Reviews Immunology 15:87–103.https://doi.org/10.1038/nri3787
-
Guarding the frontiers: the biology of type III interferonsNature Immunology 16:802–809.https://doi.org/10.1038/ni.3212
Article and author information
Author details
Publication history
Copyright
© 2018, Wack
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,204
- views
-
- 138
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
- Microbiology and Infectious Disease
Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.
-
- Immunology and Inflammation
- Microbiology and Infectious Disease
Innate immune responses triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection play pivotal roles in the pathogenesis of COVID-19, while host factors including proinflammatory cytokines are critical for viral containment. By utilizing quantitative and qualitative models, we discovered that soluble factors secreted by human monocytes potently inhibit SARS-CoV-2-induced cell-cell fusion in viral-infected cells. Through cytokine screening, we identified that interleukin-1β (IL-1β), a key mediator of inflammation, inhibits syncytia formation mediated by various SARS-CoV-2 strains. Mechanistically, IL-1β activates RhoA/ROCK signaling through a non-canonical IL-1 receptor-dependent pathway, which drives the enrichment of actin bundles at the cell-cell junctions, thus prevents syncytia formation. Notably, in vivo infection experiments in mice confirmed that IL-1β significantly restricted SARS-CoV-2 spread in the lung epithelium. Together, by revealing the function and underlying mechanism of IL-1β on SARS-CoV-2-induced cell-cell fusion, our study highlights an unprecedented antiviral function for cytokines during viral infection.