1. Biochemistry and Chemical Biology
Download icon

Ribozyme-catalysed RNA synthesis using triplet building blocks

  1. James Attwater
  2. Aditya Raguram
  3. Alexey S Morgunov
  4. Edoardo Gianni
  5. Philipp Holliger  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
Research Article
  • Cited 0
  • Views 2,533
  • Annotations
Cite as: eLife 2018;7:e35255 doi: 10.7554/eLife.35255

Abstract

RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit '+' and '-' strands in segments and assemble them into a new active ribozyme.

Article and author information

Author details

  1. James Attwater

    Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Aditya Raguram

    Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexey S Morgunov

    Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Edoardo Gianni

    Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Philipp Holliger

    Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    ph1@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon 0000-0002-3440-9854

Funding

Medical Research Council (MC_U105178804)

  • Philipp Holliger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anna Marie Pyle, Reviewing Editor, Yale University, United States

Publication history

  1. Received: January 19, 2018
  2. Accepted: May 9, 2018
  3. Accepted Manuscript published: May 15, 2018 (version 1)

Copyright

© 2018, Attwater et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,533
    Page views
  • 462
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Minxian Qian et al.
    Research Article Updated
    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Richard S Marshall, Richard D Vierstra
    Research Article Updated