Cancer Immunotherapy: A peptide puzzle
The primary function of the immune system is to detect and eliminate any abnormal cells in the body. To detect these abnormal cells, immune cells called 'killer cells' look for changes in the peptides that are present on the surface of all cells. In healthy cells these peptides stand for normal proteins made inside the cell. However, if new peptides are found, the killer cells take that as evidence of abnormality, such as a virus infection or cancer, and they destroy the abnormal cells to limit the spread of an infection or the growth of a cancer. So why do the killer cells fail to prevent the growth of some tumors in the first place?
The idea that immune system could contain the growth of tumors has been controversial for many decades (Burnet, 1967; Hellström et al., 1968). However, the recent success of immunotherapy – which was highlighted when the 2018 Nobel Prize in Physiology or Medicine was awarded to James Allison and Tasuku Honjo – has dramatically improved the prospects of cancer treatment. Many, but not all, patients with previously incurable cancers have effectively been cured by immunotherapy.
Making further improvements, to help patients who are not responsive to immunotherapy at present, will require a better understanding of how the body regulates the response of killer cells to cancer. This is especially important during the early stages of cancer when there are relatively few abnormal cells. Now, in eLife, David Scheinberg and colleagues at Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center – including Ron Gejman and Aaron Chang as joint first authors – report the results of studies in which an elegant new experimental platform called PresentER was used to study the response of killer cells to thousands of different peptides in mice (Gejman et al., 2018).
Cancer cells were injected into immunocompetent mice and left to grow for several weeks. Some cancer cells were detected and destroyed by the immune system, while others failed to be eliminated and grew into tumors. When Gejman et al. analyzed the cells in these tumors they found to their surprise that, in general, the presence of a particular peptide did not result in detection and rejection: this was also true even for immunogenic peptides (that is, for peptides that are known to elicit a strong response from the immune system). Rather, the tumors that developed tended to contain cells expressing a wide range of different immunogenic peptides. This suggests that the immune system can only detect and reject a tumor when a certain fraction of the cells in the tumor display the same immunogenic peptide. This behavior is particularly interesting because it is similar to what is seen in human cancer patients who do not benefit from immunotherapy (McGranahan et al., 2016).
Why does the immune system fail to reject cancer cells that display a heterogenous mix of peptides? To explore this question Gejman et al. injected mice with mixtures of cancer cells in which some of the cells displayed immunogenic peptide, while the rest displayed non-immunogenic peptides. When the fraction of cells with immunogenic peptides was low, the cells were not eliminated (Figure 1). Moreover, the minimum fraction required to generate an effective immune response varied between different peptides, suggesting that some as-yet-unknown features of the peptides were important.

Schematic illustration of the anti-cancer immune response.
(a) Gejman et al. found that a cancer that contains a large fraction of immunogenic tumor cells of the same type (shown in green) can be effectively rejected by the immune system of the mouse (left), whereas a cancer that contains a small fraction of immunogenic tumor cells will not be rejected (right). (b) However, a cancer that contains a large fraction of immunogenic tumor cells of different types (shown in different colors) will not be rejected. This behavior observed by Gejman et al. in mice is similar to that seen in humans who do not respond to immunotherapy (McGranahan et al., 2016).
The work of Gejman et al. establishes that peptide heterogeneity within cancer cells has an impact on the detection of cancer and also on the responsiveness to immunotherapy. It also highlights the influence of the fraction of the immunogenic cells in a given cancer, a factor that has largely been underestimated up until now, and the need for a better understanding of the role of immunogenic peptides in the generating an effective immune response to cancer. And last, but not least, this latest work shows the potential of the PresentER approach to be used in large-scale screening studies of potentially immunogenic peptides.
References
-
Immunological aspects of malignant diseaseThe Lancet 1:1171–1174.https://doi.org/10.1016/S0140-6736(67)92837-1
Article and author information
Author details
Publication history
- Version of Record published: December 7, 2018 (version 1)
Copyright
© 2018, Guan and Shastri
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,244
- Page views
-
- 242
- Downloads
-
- 1
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
Anti-tumor drug resistance is a challenge for human triple-negative breast cancer (TNBC) treatment. Our previous work demonstrated that TNFAIP2 activates RAC1 to promote TNBC cell proliferation and migration. However, the mechanism by which TNFAIP2 activates RAC1 is unknown. In this study, we found that TNFAIP2 interacts with IQGAP1 and Integrin β4. Integrin β4 activates RAC1 through TNFAIP2 and IQGAP1 and confers DNA damage-related drug resistance in TNBC. These results indicate that the Integrin β4/TNFAIP2/IQGAP1/RAC1 axis provides potential therapeutic targets to overcome DNA damage-related drug resistance in TNBC.
-
- Cancer Biology
The mTOR inhibitor, everolimus, is an important clinical management component of metastatic ER+ breast cancer (BC). However, most patients develop resistance and progress on therapy, highlighting the need to discover strategies that increase mTOR inhibitor effectiveness. We developed ER+ BC cell lines, sensitive or resistant to everolimus, and discovered that combination treatment of ONC201/TIC10 with everolimus inhibited cell growth in 2D/3D in vitro studies. We confirmed increased therapeutic response in primary patient cells progressing on everolimus, supporting clinical relevance. We show that ONC201/TIC10 mechanism in metastatic ER+ BC cells involves oxidative phosphorylation inhibition and stress response activation. Transcriptomic analysis in everolimus resistant breast patient tumors and mitochondrial functional assays in resistant cell lines demonstrated increased mitochondrial respiration dependency, contributing to ONC201/TIC10 sensitivity. We propose that ONC201/TIC10 and modulation of mitochondrial function may provide an effective add-on therapy strategy for patients with metastatic ER+ BCs resistant to mTOR inhibitors.