Cancer Immunotherapy: A peptide puzzle

  1. Jian Guan
  2. Nilabh Shastri  Is a corresponding author
  1. Johns Hopkins School of Medicine, United States

Abstract

Why does cancer develop in situations where the immune system is perfectly capable of eliminating it?

Main text

The primary function of the immune system is to detect and eliminate any abnormal cells in the body. To detect these abnormal cells, immune cells called 'killer cells' look for changes in the peptides that are present on the surface of all cells. In healthy cells these peptides stand for normal proteins made inside the cell. However, if new peptides are found, the killer cells take that as evidence of abnormality, such as a virus infection or cancer, and they destroy the abnormal cells to limit the spread of an infection or the growth of a cancer. So why do the killer cells fail to prevent the growth of some tumors in the first place?

The idea that immune system could contain the growth of tumors has been controversial for many decades (Burnet, 1967; Hellström et al., 1968). However, the recent success of immunotherapy – which was highlighted when the 2018 Nobel Prize in Physiology or Medicine was awarded to James Allison and Tasuku Honjo – has dramatically improved the prospects of cancer treatment. Many, but not all, patients with previously incurable cancers have effectively been cured by immunotherapy.

Making further improvements, to help patients who are not responsive to immunotherapy at present, will require a better understanding of how the body regulates the response of killer cells to cancer. This is especially important during the early stages of cancer when there are relatively few abnormal cells. Now, in eLife, David Scheinberg and colleagues at Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center – including Ron Gejman and Aaron Chang as joint first authors – report the results of studies in which an elegant new experimental platform called PresentER was used to study the response of killer cells to thousands of different peptides in mice (Gejman et al., 2018).

Cancer cells were injected into immunocompetent mice and left to grow for several weeks. Some cancer cells were detected and destroyed by the immune system, while others failed to be eliminated and grew into tumors. When Gejman et al. analyzed the cells in these tumors they found to their surprise that, in general, the presence of a particular peptide did not result in detection and rejection: this was also true even for immunogenic peptides (that is, for peptides that are known to elicit a strong response from the immune system). Rather, the tumors that developed tended to contain cells expressing a wide range of different immunogenic peptides. This suggests that the immune system can only detect and reject a tumor when a certain fraction of the cells in the tumor display the same immunogenic peptide. This behavior is particularly interesting because it is similar to what is seen in human cancer patients who do not benefit from immunotherapy (McGranahan et al., 2016).

Why does the immune system fail to reject cancer cells that display a heterogenous mix of peptides? To explore this question Gejman et al. injected mice with mixtures of cancer cells in which some of the cells displayed immunogenic peptide, while the rest displayed non-immunogenic peptides. When the fraction of cells with immunogenic peptides was low, the cells were not eliminated (Figure 1). Moreover, the minimum fraction required to generate an effective immune response varied between different peptides, suggesting that some as-yet-unknown features of the peptides were important.

Schematic illustration of the anti-cancer immune response.

(a) Gejman et al. found that a cancer that contains a large fraction of immunogenic tumor cells of the same type (shown in green) can be effectively rejected by the immune system of the mouse (left), whereas a cancer that contains a small fraction of immunogenic tumor cells will not be rejected (right). (b) However, a cancer that contains a large fraction of immunogenic tumor cells of different types (shown in different colors) will not be rejected. This behavior observed by Gejman et al. in mice is similar to that seen in humans who do not respond to immunotherapy (McGranahan et al., 2016).

The work of Gejman et al. establishes that peptide heterogeneity within cancer cells has an impact on the detection of cancer and also on the responsiveness to immunotherapy. It also highlights the influence of the fraction of the immunogenic cells in a given cancer, a factor that has largely been underestimated up until now, and the need for a better understanding of the role of immunogenic peptides in the generating an effective immune response to cancer. And last, but not least, this latest work shows the potential of the PresentER approach to be used in large-scale screening studies of potentially immunogenic peptides.

References

Article and author information

Author details

  1. Jian Guan

    Jian Guan is in the Department of Pathology, Johns Hopkins School of Medicine, Baltimore, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0118-6578
  2. Nilabh Shastri

    Nilabh Shastri is in the Department of Pathology, Johns Hopkins School of Medicine, Baltimore, United States

    For correspondence
    nshastr3@jhmi.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8060-3025

Publication history

  1. Version of Record published: December 7, 2018 (version 1)

Copyright

© 2018, Guan and Shastri

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,189
    Page views
  • 237
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jian Guan
  2. Nilabh Shastri
(2018)
Cancer Immunotherapy: A peptide puzzle
eLife 7:e41524.
https://doi.org/10.7554/eLife.41524

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Gökçe Senger et al.
    Research Article

    Aneuploidy, a state of chromosome imbalance, is a hallmark of human tumors, but its role in cancer still remains to be fully elucidated. To understand the consequences of whole-chromosome-level aneuploidies on the proteome, we integrated aneuploidy, transcriptomic and proteomic data from hundreds of TCGA/CPTAC tumor samples. We found a surprisingly large number of expression changes happened on other, non-aneuploid chromosomes. Moreover, we identified an association between those changes and co-complex members of proteins from aneuploid chromosomes. This co-abundance association is tightly regulated for aggregation-prone aneuploid proteins and those involved in a smaller number of complexes. On the other hand, we observe that complexes of the cellular core machinery are under functional selection to maintain their stoichiometric balance in aneuploid tumors. Ultimately, we provide evidence that those compensatory and functional maintenance mechanisms are established through post-translational control and that the degree of success of a tumor to deal with aneuploidy-induced stoichiometric imbalance impacts the activation of cellular protein degradation programs and patient survival.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    David J Hosfield et al.
    Research Article

    Chemical manipulation of estrogen receptor alpha ligand binding domain structural mobility tunes receptor lifetime and influences breast cancer therapeutic activities. Selective estrogen receptor modulators (SERMs) extend ERα cellular lifetime/accumulation. They are antagonists in the breast but agonists in the uterine epithelium and/or in bone. Selective estrogen receptor degraders/downregulators (SERDs) reduce ERα cellular lifetime/accumulation and are pure antagonists. Activating somatic ESR1 mutations Y537S and D538G enable resistance to first-line endocrine therapies. SERDs have shown significant activities in ESR1 mutant setting while few SERMs have been studied. To understand whether chemical manipulation of ERα cellular lifetime and accumulation influences antagonistic activity, we studied a series of methylpyrollidine lasofoxifene derivatives that maintained the drug's antagonistic activities while uniquely tuning ERα cellular accumulation. These molecules were examined alongside a panel of antiestrogens in live cell assays of ERα cellular accumulation, lifetime, SUMOylation, and transcriptional antagonism. High-resolution x-ray crystal structures of WT and Y537S ERα ligand binding domain in complex with the methylated lasofoxifene derivatives or representative SERMs and SERDs show that molecules that favor a highly buried helix 12 antagonist conformation achieve the greatest transcriptional suppression activities in breast cancer cells harboring WT/Y537S ESR1. Together these results show that chemical reduction of ERα cellular lifetime is not necessarily the most crucial parameter for transcriptional antagonism in ESR1 mutated breast cancer cells. Importantly, our studies show how small chemical differences within a scaffold series can provide compounds with similar antagonistic activities, but with greatly different effects of the cellular lifetime of the ERα, which is crucial for achieving desired SERM or SERD profiles.