The impact of measles immunization campaigns in India using a nationally representative sample of 27,000 child deaths

  1. Benjamin KC Wong  Is a corresponding author
  2. Shaza A Fadel
  3. Shally Awasthi
  4. Ajay Khera
  5. Rajesh Kumar
  6. Geetha Menon
  7. Prabhat Jha  Is a corresponding author
  1. St Michael's Hospital, Canada
  2. King George's Medical University, India
  3. Government of India, India
  4. Postgraduate Institute of Medical Education and Research, India
  5. National Institute of Medical Statistics, Indian Council of Medical Research, India

Abstract

India comprises much of the persisting global childhood measles mortality. India implemented a mass second-dose measles immunization campaign in 2010. We used interrupted time series and multilevel regression to quantify the campaign's impact on measles mortality using the nationally representative Million Death Study (including 27,000 child deaths in 1.3 million households surveyed from 2005–2013). 1–59-month measles mortality rates fell more in the campaign states following launch (27%) versus non-campaign states (11%). Declines were steeper in girls than boys and were specific to measles deaths. Measles mortality risk was lower for children living in a campaign district (OR 0.6, 99%CI 0.4–0.8) or born in 2009 or later (OR 0.8, 99%CI 0.7–0.9). The campaign averted up to 41,000–56,000 deaths during 2010–13, or 39%–57% of the expected deaths nationally. Elimination of measles deaths in India is feasible.

Data availability

Under legal agreement with the Registrar General of India, the MDS data cannot be redistributed outside of the Centre for Global Health Research. To request MDS data access procedures or to set up a data transfer agreement, please contact the Office of the Registrar General, RK Puram, New Delhi, India (rgoffice.rgi@nic.in). The public census reports can be found at http://www.censusindia.gov.in/vital_statistics/SRS_Statistical_Report.html. Source data files have been provided for Figures 1,2,3,4, Figure 1 - figure supplement 1, and Table 2. National survey data (from Figure 5) can be obtained free of charge from the following websites: http://rchiips.org/nfhs/NFHS-4Report.shtml (NFHS-4); http://rchiips.org/nfhs/report.shtml (NFHS-3); http://rchiips.org/DLHS-4.html (DLHS-4); http://rchiips.org/prch-3.html (DLHS-3); and http://rchiips.org/state-report-rch2.html (DLHS-2).

Article and author information

Author details

  1. Benjamin KC Wong

    Centre for Global Health Research, St Michael's Hospital, Toronto, Canada
    For correspondence
    wongbenja@smh.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7745-6271
  2. Shaza A Fadel

    Centre for Global Health Research, St Michael's Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2336-6254
  3. Shally Awasthi

    Department of Pediatrics, King George's Medical University, Lucknow, India
    Competing interests
    No competing interests declared.
  4. Ajay Khera

    Ministry of Health and Family Welfare, Government of India, Delhi, India
    Competing interests
    No competing interests declared.
  5. Rajesh Kumar

    School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
    Competing interests
    No competing interests declared.
  6. Geetha Menon

    Department of Health Research, National Institute of Medical Statistics, Indian Council of Medical Research, New Delhi, India
    Competing interests
    No competing interests declared.
  7. Prabhat Jha

    Center for Global Health Research, St Michael's Hospital, Toronto, Canada
    For correspondence
    jhap@smh.ca
    Competing interests
    Prabhat Jha, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7067-8341

Funding

Canadian Institutes of Health Research (FDN154277)

  • Prabhat Jha

Bill and Melinda Gates Foundation

  • Prabhat Jha

National Institutes of Health (R01TW05991-01)

  • Prabhat Jha

External funding is from the Canadian Institutes of Health Research (http://www.cihr-irsc.gc.ca, Grant FDN154277), the US National Institutes of Health (https://www.nih.gov, Grant R01TW05991-01), and the Bill and Melinda Gates Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Ethics

Human subjects: Ethics approval for the MDS was obtained from the Post Graduate Institute of Medical Research, St. John's Research Institute and St. Michael's Hospital, Toronto, Ontario, Canada. Consent procedures have been published earlier (Gomes et al., 2017; Jha et al., 2006a; Registrar General of India, 2016).

Copyright

© 2019, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,443
    views
  • 396
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin KC Wong
  2. Shaza A Fadel
  3. Shally Awasthi
  4. Ajay Khera
  5. Rajesh Kumar
  6. Geetha Menon
  7. Prabhat Jha
(2019)
The impact of measles immunization campaigns in India using a nationally representative sample of 27,000 child deaths
eLife 8:e43290.
https://doi.org/10.7554/eLife.43290

Share this article

https://doi.org/10.7554/eLife.43290

Further reading

  1. Measles vaccination campaigns have saved the lives of about 50,000 Indian children in three years.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.