Cytokines: Revealing the secrets of secretion
When a pathogen enters our body, innate immune cells called macrophages respond by making and releasing cytokines, small proteins which recruit other agents of the immune system to help combat the infection (Gordon, 1995; O'Connor et al., 2015). Many of these microbes are detected by receptors on the surface of the macrophage: for example, the lipopolysaccharide molecules that coat a group of bacteria bind to toll-like receptors on the immune cell, triggering the synthesis and the release of cytokines. One such cytokine, CCL2, is synthesized at the rough endoplasmic reticulum. It accumulates inside the reticulum, and then embarks on a journey from one cellular compartment to another, traveling inside vesicles that bud off one structure and then fuse with the next. Ultimately CCL2 is secreted by the macrophage (Figure 1). Many of the details of this process, such as the identity of the secretory vesicles, how their trafficking is regulated and the mechanisms used to expel the cytokine from the cell, are not fully understood (Lacy and Stow, 2011).
Ion channels are gate-like proteins that control many biological processes by enabling ions to pass through membranes. For example, a channel called TRPML2 belongs to a family that allows the movement of positive ions, such as calcium ions (Cuajungco et al., 2016). This group of proteins is embedded on the external membrane of a cell but also on intracellular compartments that store calcium, such as endosomes and lysosomes (Morgan et al., 2011; Li et al., 2018). Mutations that inactivate the other ion channels in the TRPML family lead to various disorders (Venkatachalam et al., 2015).
In contrast, TRPML2 is less well studied and characterized at a molecular level. It is mostly found in immune cells, and the expression of TRPML2 in a macrophage increases when the cell encounters lipopolysaccharides. In addition, macrophages from mice in which the gene for TRPML2 is deactivated fail to secrete CCL2 in response to lipopolysaccharides (Sun et al., 2015). Now, in eLife, Christian Wahl-Schott, Franz Bracher and Christian Grimm of Ludwig Maximilians University of Munich and colleagues – including Eva Plesch, Cheng-Chang Chen and Elisabeth Butz as joint first authors – report how a better understanding of the role played by TRPML2 in the release of CCL2 may help to crack open the black box of cytokine secretion (Plesch et al., 2018).
Plesch and collaborators went through a library of small molecules to identify several agonists of TRPML2, testing each candidate on human embryonic kidney cells that express this channel in the plasma membrane. These molecules were designed so they could also reach the ion channels that were present deep within the cell, in the endosomes and lysosomes. An increase in calcium ions inside the cell meant that a small molecule was ‘turning on’ the channel. The compounds that showed promising effects were then more rigorously tested on a new set up which involved tearing open a single cell with a pipet, and then using a second pipet to record ion currents in experimentally enlarged lysosomes and endosomes, thanks to a method known as patch clamping (Figure 1; Chen et al., 2017). Thus, the effect of each molecule on the TRPML2 channels of the endosome was assessed by directly recording whether whole-endosome currents were stimulated. These experiments, paired with rounds of medical chemistry, yielded ML2-SA1, a potent agonist for TRPML2 that is specific to this channel: this molecule allowed the team to dissect the journey of CCL2 inside a cell (Plesch et al., 2018).
By treating cells with ML2-SA1, the researchers – who are based in Italy, Germany and the United States – show that when the TRPML2 channels are open, macrophages can secrete CCL2 and recruit more cells. TRPML2 is inactive at acidic pH, so it is unlikely that CCL2 is transported in structures called lysosomes, which are profoundly acidic: indeed, the cells did not release any lysosomal proteins. Early and late endosomes, on the other hand, are mildly acidic and express TRPML2, which makes them more probable vehicles for CCL2. However, carriers known as Golgi vesicles cannot be excluded (Figure 1).
When TRPML2 opens, positive ions, and in particular calcium ions, can move across the membrane; the resulting changes in ion composition inside and outside the endosomes may promote all aspects of CCL2 trafficking, involving both fission and fusion of vesicles and the secretion of CCL2 from the cell itself (Venkatachalam et al., 2015).
Having a selective TRPML2 agonist will help to find molecules that decrease the activity of the channel. These drugs could then be used to treat immune diseases that are associated with an enhanced release of CCL2, such as psoriasis, multiple sclerosis, rheumatoid arthritis and atherosclerosis (O'Connor et al., 2015).
References
-
Small molecules for early endosome-specific patch clampingCell Chemical Biology 24:907–916.https://doi.org/10.1016/j.chembiol.2017.05.025
-
The mucolipin-2 (TRPML2) ion channel: A tissue-specific protein crucial to normal cell functionPflügers Archiv - European Journal of Physiology 468:177–192.https://doi.org/10.1007/s00424-015-1732-2
-
Lysosomal ion channels as decoders of cellular signalsTrends in Biochemical Sciences.https://doi.org/10.1016/j.tibs.2018.10.006
-
Molecular mechanisms of endolysosomal Ca2+ signalling in health and diseaseBiochemical Journal 439:349–378.https://doi.org/10.1042/BJ20110949
-
CCL2-CCR2 signaling in disease pathogenesisEndocrine, Metabolic & Immune Disorders Drug Targets 15:105–118.https://doi.org/10.2174/1871530315666150316120920
-
Novel role of TRPML2 in the regulation of the innate immune responseJournal of Immunology 195:4922–4932.https://doi.org/10.4049/jimmunol.1500163
Article and author information
Author details
Publication history
Copyright
© 2018, Galione et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,214
- views
-
- 216
- downloads
-
- 3
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
-
- Biochemistry and Chemical Biology
- Cell Biology
Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.