Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP

  1. Meghna Sobti
  2. Robert Ishmukhametov
  3. James C Bouwer
  4. Anita Ayer
  5. Cacang Suarna
  6. Nicola J Smith
  7. Mary Christie
  8. Roland Stocker
  9. Thomas M Duncan
  10. Alastair G Stewart  Is a corresponding author
  1. The Victor Chang Cardiac Research Institute, Australia
  2. University of Oxford, United Kingdom
  3. The University of Wollongong, Australia
  4. SUNY Upstate Medical University, United States

Abstract

ATP synthase produces the majority of cellular energy in most cells. We have previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition of nucleotide (Sobti et al. 2016), indicating that the subunit ε engages the α, β and γ subunits to lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions of the enzyme frozen after the addition of MgATP to identify the changes that occur when this ε inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP synthase adopts a different conformation with a catalytic subunit changing conformation substantially and the ε C-terminal domain transitioning via an intermediate 'half-up' state to a condensed 'down' state. This work provides direct evidence for unique conformational states that occur in E. coli ATP synthase when ATP binding prevents the ε C-terminal domain from entering the inhibitory 'up' state.

Data availability

Cryo-EM maps have been deposited to the EMDB. Codes: EMD-9345, EMD-9346 and EMD-9348.

The following data sets were generated

Article and author information

Author details

  1. Meghna Sobti

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Robert Ishmukhametov

    Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. James C Bouwer

    Molecular Horizons, The University of Wollongong, Wollongong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Ayer

    Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Cacang Suarna

    Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicola J Smith

    Molecular Cardiology and Biophysics Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Mary Christie

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Roland Stocker

    Vascular Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Thomas M Duncan

    Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alastair G Stewart

    Molecular, Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Darlinghurst, Australia
    For correspondence
    a.stewart@victorchang.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2070-6030

Funding

National Health and Medical Research Council (APP1159347)

  • Alastair G Stewart

National Health and Medical Research Council (APP1146403)

  • Meghna Sobti
  • Alastair G Stewart

Australian Research Council (DE160100608)

  • Mary Christie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Werner Kühlbrandt, Max Planck Institute of Biophysics, Germany

Version history

  1. Received: November 26, 2018
  2. Accepted: March 25, 2019
  3. Accepted Manuscript published: March 26, 2019 (version 1)
  4. Version of Record published: April 4, 2019 (version 2)

Copyright

© 2019, Sobti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,872
    views
  • 406
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meghna Sobti
  2. Robert Ishmukhametov
  3. James C Bouwer
  4. Anita Ayer
  5. Cacang Suarna
  6. Nicola J Smith
  7. Mary Christie
  8. Roland Stocker
  9. Thomas M Duncan
  10. Alastair G Stewart
(2019)
Cryo-EM reveals distinct conformations of E. coli ATP synthase on exposure to ATP
eLife 8:e43864.
https://doi.org/10.7554/eLife.43864

Share this article

https://doi.org/10.7554/eLife.43864

Further reading

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.