Computational Psychiatry: Exploring atypical timescales in the brain
The electrical activity of any region of the brain changes with time in a complex way that can be described as combinations of oscillations with different amplitudes, frequencies and phases. Different areas of the brain are also characterized by an intrinsic timescale that reflects the length of the time window over which the signals coming into that brain region are integrated (Mesulam, 1998; Honey et al., 2012).
Regions with short intrinsic timescales are usually located at the periphery of the brain network and are implicated in interactions between the brain and the external world, for example, perception and movement. Regions with long timescales are usually strongly connected hubs located at the core of the brain. They are important for regulating interactions between the brain and the body, such as emotions, mood and anxiety (Gollo et al., 2015). This gradient of timescales forms a hierarchy in brain dynamics that recapitulates the hierarchy in brain structure (Kiebel et al., 2008; Murray et al., 2014; Figure 1A).
This hierarchy of timescales also plays an important role in perception and many other behaviors, and modifications to these timescales can be detrimental to brain function (Kiebel et al., 2008; Murray et al., 2014; Heeger, 2017). Now, in eLife, Takamitsu Watanabe, Geraint Rees and Naoki Masuda report that changes in intrinsic timescales are associated with the symptoms of autism spectrum disorder in high-functioning individuals (Watanabe et al., 2019). Their study raises the question of whether the intrinsic timescales can be used as a biomarker for neuropsychiatric disorders and as a target for potential treatment therapies.
The researchers – who are based at the RIKEN Centre for Brain Science, University College London and the University of Bristol – used functional magnetic resonance imaging to measure intrinsic timescales in people with and without a high-functioning form of autism. The results revealed that people with this form of autism have atypically short timescales in primary sensory and visual areas, while a region called the caudate, which is implicated in sensorimotor coordination, showed a longer timescale (Grahn et al., 2008). This reinforces the theory that intrinsic timescales are central to brain function, and that imbalances in specific regions substantially affect the severity of symptoms in autism spectrum disorders (Figure 1B).
Intrinsic timescales can be estimated using simple autocorrelations, which may be used to identify biomarkers and to improve our understanding of diseases and treatment plans (Figure 1B). But further research is needed to fully comprehend the causes and implications of atypical intrinsic timescales. In people with autism, shorter timescales in regions of sensory and visual cortices could relate to a heightened sensory perception, which is consistent with an excessive expectation of changes in their environment (Lawson et al., 2017). Moreover, longer timescales in the caudate might also indicate a compensation strategy to cope with an overload of sensory input due to the heightened sensory perception.
The work of Watanabe et al. opens at least two main lines of research. The first would involve mapping the timescales of brain regions across different neuropsychiatric disorders, including schizophrenia and obsessive-compulsive disorder, to determine where and what type of timescale deviations occur (King and Lord, 2011). This should also be done in healthy individuals to use their timescales as a benchmark. Depending on the location, disturbances ought to have different effects. For example, hub regions play a role in many disorders, and disturbances in their timescales may also evidence their susceptibility to dysfunction (Fornito et al., 2015; Gollo et al., 2018).
The second line of research would explore the possibility of reducing symptoms by manipulating atypical timescales, such as the ones Watanabe et al. observed in people with autism. Although drugs might not be specific enough to selectively act upon precise regions, brain stimulation could be a powerful solution (Figure 1C). For example, superficial cortical regions can be targeted by non-invasive methods such as transcranial magnetic stimulation. Moreover, recent advances suggest that brain stimulation can modify the timescale of the target region, which may be used to modulate intrinsic timescales to mitigate symptoms (Cocchi et al., 2016; Gollo et al., 2017).
Overall, the work of Watanabe, Rees and Masuda reveals how systems-level approaches hold the potential to shift paradigms in psychiatry. Translating these recent results into clinical practice will involve many practical challenges, but they may also be highly beneficial. Although many questions certainly remain, these are crucial advances on the neurobiological basis of autism.
References
-
The connectomics of brain disordersNature Reviews Neuroscience 16:159–172.https://doi.org/10.1038/nrn3901
-
Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuationsPhilosophical Transactions of the Royal Society B: Biological Sciences 370:20140165.https://doi.org/10.1098/rstb.2014.0165
-
Fragility and volatility of structural hubs in the human connectomeNature Neuroscience 21:1107–1116.https://doi.org/10.1038/s41593-018-0188-z
-
The cognitive functions of the caudate nucleusProgress in Neurobiology 86:141–155.https://doi.org/10.1016/j.pneurobio.2008.09.004
-
A hierarchy of time-scales and the brainPLoS Computational Biology 4:e1000209.https://doi.org/10.1371/journal.pcbi.1000209
-
Is schizophrenia on the autism spectrum?Brain Research 1380:34–41.https://doi.org/10.1016/j.brainres.2010.11.031
-
Adults with autism overestimate the volatility of the sensory environmentNature Neuroscience 20:1293–1299.https://doi.org/10.1038/nn.4615
-
A hierarchy of intrinsic timescales across primate cortexNature Neuroscience 17:1661–1663.https://doi.org/10.1038/nn.3862
Article and author information
Author details
Publication history
Copyright
© 2019, Gollo
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,626
- views
-
- 202
- downloads
-
- 18
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Neuroscience
The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1–5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.
-
- Computational and Systems Biology
- Neuroscience
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Slc17a6 (Vglut2) mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When Trpc5 channels in Kiss1ARH neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1ARH neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.