Microbiome: Does disease start in the mouth, the gut or both?
Different sites inside the body and on its surface are home to distinct ecosystems of bacteria and other microbes (Sender et al., 2016). The microbes in these ecosystems, which are known as microbiomes, are more than just microscopic hitchhikers; they constantly interact with their human host. The gut microbiome is one of the largest microbiomes and it is generally regarded as a friend: it helps train the immune system, keeps dangerous colonizers away, and produces small molecules that nurture the cells that line the colon. However, the microbiome can turn into a foe if the host–microbe relationship is thrown off balance. Such an imbalance can cause gut microbes to produce carcinogenic toxins, or trigger gut inflammation and metabolic problems. Thus, an in-depth understanding of the factors that shape the human microbiome is key to preventing and controlling disease.
In the past it was thought that the microbes usually found in the mouth only transfer to the gut in people with specific diseases, such as rheumatoid arthritis, inflammatory bowel disease and colorectal cancer (Valdes et al., 2018). In healthy individuals, on the other hand, it was thought that stomach and bile acids reduce the number of viable oral bacteria that reach the gut to an extent that prevents any significant colonization (Martinsen et al., 2005; Ridlon et al., 2014).
Now, in eLife, Peer Bork and colleagues – including Thomas Schmidt and Matthew Hayward of the European Molecular Biology Laboratory (EMBL) as joint first authors – report compelling evidence that bacteria are transmitted from the oral environment to the gut far more often than was previously thought (Schmidt et al., 2019). They show that while the oral and gut microbiomes of an individual have distinct, unrelated compositions, strains of oral bacteria colonize the gut far more often than explained by chance alone.
Schmidt et al. – who are based at EMBL and other institutes in Germany, France, Luxembourg, Denmark, Switzerland, China and the US – used DNA shotgun sequencing data obtained from the saliva and stools of 470 people to track oral-fecal strain transmission. Building profiles of variations in single nucleotides in the DNA sequences allows the microbial strains in the samples to be identified (Li et al., 2016). From these profiles, Schmidt et al. built mathematical models that indicate the likelihood of a strain transferring from mouth to gut within a particular individual. They found that 74 of the 125 microbial species frequently found in both the mouth and the gut showed evidence of oral-gut transmission in all individuals: these species included a number of bacteria that are highly prevalent in the mouth, such as Streptococcus, Veillonella, Actinomyces and Haemophilus. Moreover, about 22 bacterial species appeared to be transmitted from mouth to gut in at least some individuals, including strains from all species of Prevotella, one of the major fecal bacteria.
However, there are some caveats to the results that merit caution. It is difficult to differentiate between bacteria that truly reside in – and actively colonize – the gut, and those that move passively through it as either live cells or dead cell DNA. The oral cavity contains many orders of magnitude fewer bacteria than the gut. In addition, the low pH of stomach acid usually reduces the viability of oral bacteria significantly, and enzymes in the small intestine degrade at least some of the released bacterial DNA (Liu et al., 2015). One way to assess the viability of bacteria is by looking at the ‘peak-to-trough ratio’ in DNA sequencing reads (Gao and Li, 2018; Korem et al., 2015), which estimates the proportion of bacteria with active DNA replication forks. These bacteria are actively multiplying, suggesting that they have colonized their environment. However, Schmidt et al. had insufficient sequencing depth in their data to reliably apply this method.
Schmidt et al. argue that the most plausible interpretation for their results is that oral strains successfully colonize the gut, but gut strains do not generally colonize the oral cavity. In line with this, several oral bacteria that are known to be relevant to human disease, including Haemophilus, Aggregatibacter and Streptococci viridans (which are associated with endocarditis), were found to be highly transmissible.
To study the link between disease and oral-gut transmission further, Schmidt et al. examined samples from colorectal cancer patients. Compared with healthy individuals, patients diagnosed with cancer had higher transmission rates of bacteria from the oral cavity to the gut, especially for strains associated with colorectal cancer, such as Fusobacterium nucleatum, Parvimonas micra and Peptostreptococcus stomatis. F. nucleatum underwent particularly frequent transmission and could be used to predict overall high transmission rates in these individuals. The results thus support a link between the oral and gut microbiome in the context of colorectal cancer (Flemer et al., 2018; Flynn et al., 2016).
By challenging the established view of the relationship between the oral microbiome and the gut microbiome in humans, the work of Schmidt et al. is a step towards a better understanding of the links between the bacterial strains found in the mouth and intestinal tract and their relationship with human disease.
References
-
Digestion of nucleic acids starts in the stomachScientific Reports 5:1–11.https://doi.org/10.1038/srep11936
-
Gastric juice: a barrier against infectious diseasesBasic Clin Pharmacol Toxicol 96:94–102.https://doi.org/10.1111/j.1742-7843.2005.pto960202.x
-
Bile acids and the gut microbiomeCurrent Opinion in Gastroenterology 30:332–338.https://doi.org/10.1097/MOG.0000000000000057
Article and author information
Author details
Acknowledgements
MN is supported by a ZONMW-VIDI grant 2013 [016.146.327] and a Dutch Heart Foundation CVON IN CONTROL Young Talent Grant 2013. The authors are additionally supported by a Le Ducq consortium grant 17CVD01 and a Novo Nordisk Foundation GUT-MMM grant 2016 and CAMIT grant 2018.
Publication history
Copyright
© 2019, Prodan et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 7,244
- views
-
- 467
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Computational and Systems Biology
Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.
-
- Computational and Systems Biology
- Microbiology and Infectious Disease
Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.