Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy
Abstract
Intracellular inclusions rich in alpha-synuclein are a hallmark of several neuropathological diseases including Parkinson's disease (PD). Previously, we reported the structure of alpha-synuclein fibrils (residues 1-121), composed of two protofibrils that are connected via a densely-packed interface formed by residues 50-57 (Guerrero-Ferreira, eLife 218;7:e36402). We here report two new polymorphic atomic structures of alpha-synuclein fibrils termed polymorphs 2a and 2b, at 3.0 Å and 3.4 Å resolution, respectively. These polymorphs show a radically different structure compared to previously reported polymorphs. The new structures have a 10 nm fibril diameter and are composed of two protofilaments which interact via intermolecular salt-bridges between amino acids K45, E57 (polymorph 2a) or E46 (polymorph 2b). The non-amyloid component (NAC) region of alpha-synuclein is fully buried by previously non-described interactions with the N-terminus. A hydrophobic cleft, the location of familial PD mutation sites, and the nature of the protofilament interface now invite to formulate hypotheses about fibril formation, growth and stability.
Data availability
Raw cryo-EM micrographs are available in EMPIAR, entry numbers EMPIAR-10323. The 3D maps are available in the EMDB, entry numbers EMD-10307 (α-Syn polymorph 2a) and EMD-10305 (α-Syn-polymorph 2b). Atomic coordinates are available at the PDB with entry numbers PDB 6SSX (α-Syn polymorph 2a) and PDB 6SST (α-Syn polymorph 2b).
Article and author information
Author details
Funding
Novo Nordisk (NNF14CC0001)
- Nicholas MI Taylor
SERI (17.00038)
- Ana-Andreea Arteni
- Beat H Meier
- Luc Bousset
Fondation Bettencourt Schueller
- Ana-Andreea Arteni
- Beat H Meier
- Luc Bousset
fondation pour la Recherche Medicale (Contract DEQ 20160334896)
- Ana-Andreea Arteni
- Beat H Meier
- Luc Bousset
Fondation Simone et Cino Del Duca of the Institut de France and
- Beat H Meier
- Luc Bousset
EC Joint Program on Neurodegenerative Diseases (TransPathND)
- Ana-Andreea Arteni
- Beat H Meier
- Luc Bousset
FRISBI (ANR-10-INSB-05-01)
- Ana-Andreea Arteni
- Beat H Meier
- Luc Bousset
EC Joint Program on Neurodegenerative Diseases (ANR-17-JPCD-0005-01)
- Ana-Andreea Arteni
- Beat H Meier
- Luc Bousset
EC Joint Program on Neurodegenerative Diseases (ANR-17-JPCD-0002-02)
- Ana-Andreea Arteni
- Beat H Meier
- Luc Bousset
EC Joint Program on Neurodegenerative Diseases (Protest-70)
- Ana-Andreea Arteni
- Beat H Meier
- Luc Bousset
Synapsis Foundation (n/a)
- Ricardo Guerrero-Ferreira
- Henning Stahlberg
Heidi-Seiler Stiftung (n/a)
- Ricardo Guerrero-Ferreira
- Henning Stahlberg
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII3_154461)
- Ricardo Guerrero-Ferreira
- Nicholas MI Taylor
- Henning Stahlberg
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (CRSII5_177195)
- Ricardo Guerrero-Ferreira
- Henning Stahlberg
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (20020_178792)
- Ricardo Guerrero-Ferreira
- Henning Stahlberg
Agence Nationale de la Recherche (ANR-12-BS08-0013-01)
- Ronald Melki
- Luc Bousset
LABEX ECOFECT (ANR-11-LABX-0048)
- Anja Böckmann
H2020 (IMPRiND)
- Ana-Andreea Arteni
- Ronald Melki
- Luc Bousset
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Guerrero-Ferreira et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 8,580
- views
-
- 1,297
- downloads
-
- 246
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.
-
- Neuroscience
The remarkable ability of the motor system to adapt to novel environments has traditionally been investigated using kinematically non-redundant tasks, such as planar reaching movements. This limitation prevents the study of how the motor system achieves adaptation by altering the movement patterns of our redundant body. To address this issue, we developed a redundant motor task in which participants reached for targets with the tip of a virtual stick held with both hands. Despite the redundancy of the task, participants consistently employed a stereotypical strategy of flexibly changing the tilt angle of the stick depending on the direction of tip movement. Thus, this baseline relationship between tip-movement direction and stick-tilt angle constrained both the physical and visual movement patterns of the redundant system. Our task allowed us to systematically investigate how the motor system implicitly changed both the tip-movement direction and the stick-tilt angle in response to imposed visual perturbations. Both types of perturbations, whether directly affecting the task (tip-movement direction) or not (stick-tilt angle around the tip), drove adaptation, and the patterns of implicit adaptation were guided by the baseline relationship. Consequently, tip-movement adaptation was associated with changes in stick-tilt angle, and intriguingly, even seemingly ignorable stick-tilt perturbations significantly influenced tip-movement adaptation, leading to tip-movement direction errors. These findings provide a new understanding that the baseline relationship plays a crucial role not only in how the motor system controls movement of the redundant system, but also in how it implicitly adapts to modify movement patterns.