Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels

  1. Florian Ullrich
  2. Sandy Blin
  3. Katina Lazarow
  4. Tony Daubitz
  5. Jens Peter von Kries
  6. Thomas J Jentsch  Is a corresponding author
  1. Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Germany

Abstract

Acid-sensing ion channels have important functions in physiology and pathology, but the molecular composition of acid-activated chloride channels had remained unclear. We now used a genome-wide siRNA screen to molecularly identify the widely expressed acid-sensitive outwardly-rectifying anion channel PAORAC/ASOR. ASOR is formed by TMEM206 proteins which display two transmembrane domains (TMs) and are expressed at the plasma membrane. Ion permeation-changing mutations along the length of TM2 and at the end of TM1 suggest that these segments line ASOR’s pore. While not belonging to a gene family, TMEM206 has orthologs in probably all vertebrates. Currents from evolutionarily distant orthologs share activation by protons, a feature essential for ASOR’s role in acid-induced cell death. TMEM206 defines a novel class of ion channels. Its identification will help to understand its physiological roles and the diverse ways by which anion-selective pores can be formed.

Data availability

Raw data are in part presented in the mansucript (e.g. IHC, Western, clamp traces), and as source data files where data points (such as current densities, ratios of permeability etc) have been extracted from original electrophysiological recordings.

Article and author information

Author details

  1. Florian Ullrich

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1153-2040
  2. Sandy Blin

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5762-5149
  3. Katina Lazarow

    Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Tony Daubitz

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Jens Peter von Kries

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas J Jentsch

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    For correspondence
    jentsch@fmp-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3509-2553

Funding

H2020 European Research Council (Advanced Grant VOLSIGNAL (#740537))

  • Thomas J Jentsch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Germany

Version history

  1. Received: June 10, 2019
  2. Accepted: July 17, 2019
  3. Accepted Manuscript published: July 18, 2019 (version 1)
  4. Version of Record published: July 29, 2019 (version 2)

Copyright

© 2019, Ullrich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,609
    Page views
  • 635
    Downloads
  • 51
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Ullrich
  2. Sandy Blin
  3. Katina Lazarow
  4. Tony Daubitz
  5. Jens Peter von Kries
  6. Thomas J Jentsch
(2019)
Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels
eLife 8:e49187.
https://doi.org/10.7554/eLife.49187

Share this article

https://doi.org/10.7554/eLife.49187

Further reading

    1. Cell Biology
    2. Neuroscience
    Zhenyong Wu, Grant F Kusick ... Shigeki Watanabe
    Research Article

    Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.