Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels

  1. Florian Ullrich
  2. Sandy Blin
  3. Katina Lazarow
  4. Tony Daubitz
  5. Jens Peter von Kries
  6. Thomas J Jentsch  Is a corresponding author
  1. Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Germany

Abstract

Acid-sensing ion channels have important functions in physiology and pathology, but the molecular composition of acid-activated chloride channels had remained unclear. We now used a genome-wide siRNA screen to molecularly identify the widely expressed acid-sensitive outwardly-rectifying anion channel PAORAC/ASOR. ASOR is formed by TMEM206 proteins which display two transmembrane domains (TMs) and are expressed at the plasma membrane. Ion permeation-changing mutations along the length of TM2 and at the end of TM1 suggest that these segments line ASOR’s pore. While not belonging to a gene family, TMEM206 has orthologs in probably all vertebrates. Currents from evolutionarily distant orthologs share activation by protons, a feature essential for ASOR’s role in acid-induced cell death. TMEM206 defines a novel class of ion channels. Its identification will help to understand its physiological roles and the diverse ways by which anion-selective pores can be formed.

Data availability

Raw data are in part presented in the mansucript (e.g. IHC, Western, clamp traces), and as source data files where data points (such as current densities, ratios of permeability etc) have been extracted from original electrophysiological recordings.

Article and author information

Author details

  1. Florian Ullrich

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1153-2040
  2. Sandy Blin

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5762-5149
  3. Katina Lazarow

    Screening Unit, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Tony Daubitz

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Jens Peter von Kries

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas J Jentsch

    Physiology Pathology Ion Transport, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
    For correspondence
    jentsch@fmp-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3509-2553

Funding

H2020 European Research Council (Advanced Grant VOLSIGNAL (#740537))

  • Thomas J Jentsch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Ullrich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,850
    views
  • 669
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Ullrich
  2. Sandy Blin
  3. Katina Lazarow
  4. Tony Daubitz
  5. Jens Peter von Kries
  6. Thomas J Jentsch
(2019)
Identification of TMEM206 proteins as pore of PAORAC/ASOR acid-sensitive chloride channels
eLife 8:e49187.
https://doi.org/10.7554/eLife.49187

Share this article

https://doi.org/10.7554/eLife.49187

Further reading

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.

    1. Cell Biology
    Inês Sequeira
    Insight

    A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.