1. Neuroscience
Download icon

Spatial Navigation: A question of scale

  1. Muireann Irish  Is a corresponding author
  2. Siddharth Ramanan
  1. University of Sydney, Australia
  2. Macquarie University, Australia
Insight
  • Cited 0
  • Views 1,343
  • Annotations
Cite this article as: eLife 2019;8:e50890 doi: 10.7554/eLife.50890

Abstract

An fMRI experiment reveals distinct brain regions that respond in a graded manner as humans process distance information across increasing spatial scales.

Main text

Just like our ancestors before us, humans must be able to navigate within both familiar and new environments, whether this involves driving to work or finding our way around a new city. Successful spatial navigation depends on many cognitive processes including memory, attention, and our perception of direction and distance (Epstein et al., 2017). A key issue, however, is that spatial environments vary considerably in terms of their size and complexity. To date most research on spatial navigation has focused on small spatial scales, such as navigating within a room or a building (Wolbers and Wiener, 2014). But it remains unclear how accurately we can estimate distances between locations on a larger scale, such as whether the Taj Mahal is closer to the Pyramids of Giza or the Great Wall of China, and how these different spatial scales are represented in the brain.

Now, in eLife, Michael Peer, Yorai Ron, Rotem Monsa and Shahar Arzy – who are based at the Hebrew University of Jerusalem, the Hadassah Medical Center and the University of Pennsylvania – report a simple but elegant experiment that teases apart which brain regions are recruited when we process information about environments that are on different spatial scales (Peer et al., 2019). Peer et al. asked internationally-travelled adults to provide the names of two locations they were personally familiar with across six spatial ‘scales’. These scales varied from small, spatially-confined areas (e.g. rooms and buildings) through medium-sized regions (e.g. local neighborhoods and cities) to expansive geographical locations (e.g. countries and continents; Figure 1A). The experiment was then personalized by asking each participant to provide the names of eight items that were personally familiar to them within each location.

How different spatial environments are represented in the human brain.

(A) In order to navigate successfully humans must be able to judge distances between objects on both small (e.g. rooms and buildings) and large (e.g. cities and countries) scales. (B) Peer et al. showed that estimating distance across different spatial scales engages three main clusters of brain regions that are organized along a gradient (represented by the white dashed lines in each hemisphere). Within each cluster, spatial environments that are smaller and more constrained (red and orange) are represented in posterior portions, whilst larger, less-constrained environments (blue and purple) are represented in more anterior portions of the clusters. The middle surface of the brain (where the right and left hemispheres meet) is shown in the upper panels; the outer surfaces of the two hemispheres are shown below.

Image credit: Adapted from Peer et al. (2019).

A few days later, participants underwent a functional magnetic resonance imaging experiment to determine which areas of the brain are selectively involved during spatial processing. This technique enables researchers to measure increases in blood flow and oxygen delivery to parts of the brain, and determine which regions are more ‘active’ when engaging in a cognitive task. During the experiment, participants were asked to judge distances between a ‘target’ item from their personal list (e.g. a table in their bedroom) and two other items from the same location (e.g. a chair or a bed in their bedroom). This allowed Peer et al. to investigate which brain regions respond to small, medium, and large spatial scales, and which regions are insensitive to scale but respond to other location or proximity information.

The experiment identified three main clusters of brain regions that are important for processing different spatial scales. What was unique about all three clusters was that activity within them shifted in a ‘graded’ manner depending on whether participants were processing spatial information on a local or more global scale. For example, when participants judged distances on a small scale in local environments, this engaged the posterior portions of all three clusters. On the other hand, when participants judged distances on a larger scale, the pattern of activity shifted towards the anterior portions of the clusters (Figure 1B).

These findings align remarkably well with previous work showing that the human hippocampus – a region of the brain involved in spatial navigation (Burgess et al., 2002) – represents object position and spatial information, such as direction and distance between objects, as a graded pattern of activity (Evensmoen et al., 2015; Evensmoen et al., 2013). The latest study, however, extends our understanding by highlighting how graded patterns of activity move from posterior to anterior regions of the spatial processing network outside of the hippocampus, depending on the spatial scale being processed (Figure 1).

The work presented here provides new insights into how humans navigate within different environments. From a clinical perspective, appreciating how humans dynamically zoom in or out of different spatial scales could help refine how various neurological conditions are diagnosed. This is most relevant for neurodegenerative disorders, such as Alzheimer’s disease, in which disorientation and a distorted sense of direction are often early symptoms (Coughlan et al., 2018; Tu et al., 2015). Whether the altered sense of direction and difficulties in judging proximity that are associated with Alzheimer’s disease are due to changes in the way that regions of the brain represent spatial scale is an important question for future studies to address.

References

Article and author information

Author details

  1. Muireann Irish

    Muireann Irish is in the Brain and Mind Centre and School of Psychology, University of Sydney, Sydney, Australia, and the ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, North Ryde, Australia

    For correspondence
    muireann.irish@sydney.edu.au
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4950-8169
  2. Siddharth Ramanan

    Siddharth Ramanan is in the Brain and Mind Centre and School of Psychology, University of Sydney, Sydney, Australia, and the ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, North Ryde, Australia

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8591-042X

Publication history

  1. Version of Record published: September 10, 2019 (version 1)

Copyright

© 2019, Irish and Ramanan

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,343
    Page views
  • 82
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Marcial Camacho et al.
    Research Article Updated

    Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane through distinct interactions of the C1C2B region with the plasma membrane: (i) one involving a polybasic face that is expected to yield a perpendicular orientation of Munc13-1 and hinder release; and (ii) another involving the DAG-Ca2+-PIP2-binding face that is predicted to result in a slanted orientation and facilitate release. Here, we have tested this model and investigated the role of the C1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays, and synaptic vesicle priming in primary murine hippocampal cultures. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that two distinct faces of this region control neurotransmitter release and short-term presynaptic plasticity.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Andrea Loreto et al.
    Research Article

    Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the nicotinamide adenine dinucleotide (NAD)-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet know is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.