Reproduction: How flies turn food into progeny
Females and males have evolved different strategies to achieve the same goal: making babies. For example, males usually produce a large number of cheap sperm cells and often display traits that help to maximize the number of successful matings. Females, on the other hand, tend to 'go for quality' by producing a small number of relatively large eggs (each of which requires a lot of energy to produce), and exhibit traits that help them maximize their 'return on investment’. It is thus not surprising that females and males require different diets to maximize their progeny. In various insects, for instance, females rely mainly on protein intake to fuel egg production, whereas males use a higher proportion of carbohydrates to optimize their Darwinian fitness (Lee et al., 2008; Maklakov et al., 2008; Jensen et al., 2015; Camus et al., 2017).
A growing body of work is dedicated to studying the specific dietary requirements that maximize reproductive success of each sex, but the underlying molecular and physiological mechanisms remain poorly understood, especially in males. Now, in eLife, Florencia Camus and Max Reuter from University College London, and Matthew Piper from Monash University, report the results of experiments on the fruit fly Drosophila melanogaster which show that male and female flies modify the expression of certain genes differently in response to changes in their diet (Camus et al., 2019).
Camus et al. fed the flies a diet that was reproductively optimal either for their own sex or for the other sex, and then sequenced the RNA of these flies. Comparing the results for female and male flies revealed that different genes had distinct responses to the two diets (Figure 1). Many metabolic or ‘core’ genes had similar expression patterns in female and male flies. However, several smaller groups of genes had transcriptional responses that were sex-specific. These groups include genes that only respond to changes in diet in one sex, and genes that exhibit opposite (antagonistic) responses to the same dietary change in male and female flies.
Among the genes that responded to diet in just one sex, Camus et al. identified genes involved in egg production and hormonal regulation in females, and genes responsible for sperm function in males. One prominent example in this category is doublesex, a well-known regulator of sexual differentiation and sex-specific behavior, which showed higher expression in females fed a high-protein diet. Genes with antagonistic responses in males and females include fit (female-specific independent of transformer), a gene that is upregulated in male flies during courtship and mating. Moreover, the transcripts that showed antagonistic responses between the sexes were enriched for GATA transcription factors which have previously been implicated in nutritional responses (including dietary restriction) and reproductive physiology.
Comparing these results to previously published datasets (Tiebe et al., 2015; Graze et al., 2018) provided compelling bioinformatic evidence that the IIS/TOR signaling network (short for the insulin/insulin-like growth factor signaling/target of rapamycin signaling network) is involved in reproduction. This is particularly interesting given growing evidence that IIS/TOR signaling plays an important role in regulating traits and processes that vary between the sexes. For example, using transcriptional profiling of virgin flies, it has been shown that reducing insulin signaling increases the differences in expression of IIS core pathway genes between the sexes (Graze et al., 2018). The work by Camus et al. makes a significant advance in this area by establishing profound connections between sex-specific dietary optima for reproduction and sex-specific expression changes in IIS/TOR.
To further corroborate the IIS/TOR connection, Camus et al. inhibited TOR signaling with the antagonist rapamycin, leading to disproportionately deleterious effects on reproductive performance when male or female flies were fed their sex-optimal diet. This suggests that TOR signaling is required for the increased reproductive performance conferred by the different diets. These results are consistent with the idea that nutrient-sensing signals mediated by IIS/TOR signaling are somehow inverted between females and males. It will be a fascinating task for future work to uncover how the nutritional signaling inputs into the IIS/TOR network are modulated in a sex-specific way to optimize each sex's reproductive performance.
Together, the results reported by Camus et al. provide fertile ground for future experiments to dissect the mechanisms that underpin sex-specific links between diet, nutrient sensing, metabolism and reproduction.
References
-
Sex and genotype effects on nutrient-dependent fitness landscapes in Drosophila melanogasterProceedings of the Royal Society B: Biological Sciences 284:20172237.https://doi.org/10.1098/rspb.2017.2237
Article and author information
Author details
Publication history
Copyright
© 2019, Flatt
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,308
- views
-
- 100
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Evolutionary Biology
Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.
-
- Evolutionary Biology
- Genetics and Genomics
It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.