Reconstitution reveals two paths of force transmission through the kinetochore

  1. Grace Elizabeth Hamilton
  2. Luke A Helgeson
  3. Cameron L Noland
  4. Charles L Asbury  Is a corresponding author
  5. Yoana N Dimitrova  Is a corresponding author
  6. Trisha N Davis  Is a corresponding author
  1. University of Washington, United States
  2. Genentech Inc, United States

Abstract

Partitioning duplicated chromosomes equally between daughter cells is a microtubule-mediated process essential to eukaryotic life. A multi-protein machine, the kinetochore, drives chromosome segregation by coupling the chromosomes to dynamic microtubule tips, even as the tips grow and shrink through the gain and loss of subunits. The kinetochore must harness, transmit, and sense mitotic forces, as a lack of tension signals incorrect chromosome-microtubule attachment and precipitates error correction mechanisms. But though the field has arrived at a 'parts list' of dozens of kinetochore proteins organized into subcomplexes, the path of force transmission through these components has remained unclear. Here we report reconstitution of functional Saccharomyces cerevisiae kinetochore assemblies from recombinantly expressed proteins. The reconstituted kinetochores are capable of self-assembling in vitro, coupling centromeric nucleosomes to dynamic microtubules, and withstanding mitotically relevant forces. They reveal two distinct pathways of force transmission and Ndc80c recruitment.

Data availability

All data analyses during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2-5 and their supplements.

Article and author information

Author details

  1. Grace Elizabeth Hamilton

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0522-0702
  2. Luke A Helgeson

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5112-2751
  3. Cameron L Noland

    Department of Structural Biology, Genentech Inc, South San Francisco, United States
    Competing interests
    Cameron L Noland, is affiliated with Genentech Inc. The author has no financial interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6364-3167
  4. Charles L Asbury

    Department of Physiology and Biophysics, University of Washington, Seattle, United States
    For correspondence
    casbury@uw.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0143-5394
  5. Yoana N Dimitrova

    Department of Structural Biology, Genentech Inc, South San Francisco, United States
    For correspondence
    dimitry4@gene.com
    Competing interests
    Yoana N Dimitrova, is affiliated with Genentech Inc. The author has no financial interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1547-5781
  6. Trisha N Davis

    Department of Biochemistry, University of Washington, Seattle, United States
    For correspondence
    tdavis@uw.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4797-3152

Funding

National Institutes of Health (Training Grant in Molecular Biophysics T32 GM008268)

  • Grace Elizabeth Hamilton

National Institutes of Health (R01 GM040506)

  • Trisha N Davis

National Institutes of Health (R35 GM130293)

  • Trisha N Davis

National Institutes of Health (R01 GM079373)

  • Charles L Asbury

National Institutes of Health (R35 GM134842)

  • Charles L Asbury

Genentech

  • Yoana N Dimitrova

Genentech

  • Cameron L Noland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Hamilton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,797
    views
  • 319
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Grace Elizabeth Hamilton
  2. Luke A Helgeson
  3. Cameron L Noland
  4. Charles L Asbury
  5. Yoana N Dimitrova
  6. Trisha N Davis
(2020)
Reconstitution reveals two paths of force transmission through the kinetochore
eLife 9:e56582.
https://doi.org/10.7554/eLife.56582

Share this article

https://doi.org/10.7554/eLife.56582

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.