The contribution of asymptomatic SARS-CoV-2 infections to transmission on the Diamond Princess cruise ship
Abstract
A key unknown for SARS-CoV-2 is how asymptomatic infections contribute to transmission. We used a transmission model with asymptomatic and presymptomatic states, calibrated to data on disease onset and test frequency from the Diamond Princess cruise ship outbreak, to quantify the contribution of asymptomatic infections to transmission. The model estimated that 74% (70-78%, 95% posterior interval) of infections proceeded asymptomatically. Despite intense testing, 53% (51-56%) of infections remained undetected, most of them asymptomatic. Asymptomatic individuals were the source for 69% (20-85%) of all infections. The data did not allow identification of the infectiousness of asymptomatic infections, however low ranges (0-25%) required a net reproduction number for individuals progressing through presymptomatic and symptomatic stages of at least 15. Asymptomatic SARS-CoV-2 infections may contribute substantially to transmission. Control measures, and models projecting their potential impact, need to look beyond the symptomatic cases if they are to understand and address ongoing transmission.
Data availability
All data analysed during this study are included in the manuscript and supporting files. Model code is available through github.
Article and author information
Author details
Funding
European Research Council Starting Grant (Action Number 757699)
- Jon C Emery
- Rein M G J Houben
Wellcome (206250/Z/17/Z)
- Timothy W Russell
- Adam J Kucharski
Wellcome (208812/Z/17/Z)
- Stefan Flasche
Wellcome (210758/Z/18/Z)
- Joel Hellewell
- Sebastian Funk
Bill and Melinda Gates Foundation (INV-003174)
- Yang Liu
Bill and Melinda Gates Foundation (NTD Modelling Consortium OPP1184344)
- Carl AB Pearson
DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z)
- Carl AB Pearson
European Union Horizon 2020 (project EpiPose (101003688))
- Yang Liu
HDR UK (MR/S003975/1)
- Rosalind M Eggo
National Institute for Health Research (16/137/109)
- Yang Liu
Medical Research Council (MC_PC 19065)
- Rosalind M Eggo
Medical Research Council (MR/P014658/1)
- Gwenan M Knight
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Emery et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,517
- views
-
- 639
- downloads
-
- 58
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Medicine
- Microbiology and Infectious Disease
- Epidemiology and Global Health
- Immunology and Inflammation
eLife has published articles on a wide range of infectious diseases, including COVID-19, influenza, tuberculosis, HIV/AIDS, malaria and typhoid fever.
-
- Epidemiology and Global Health
Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.