1. Epidemiology and Global Health
  2. Microbiology and Infectious Disease
Download icon

The contribution of asymptomatic SARS-CoV-2 infections to transmission on the Diamond Princess cruise ship

Research Article
  • Cited 0
  • Views 3,578
  • Annotations
Cite this article as: eLife 2020;9:e58699 doi: 10.7554/eLife.58699

Abstract

A key unknown for SARS-CoV-2 is how asymptomatic infections contribute to transmission. We used a transmission model with asymptomatic and presymptomatic states, calibrated to data on disease onset and test frequency from the Diamond Princess cruise ship outbreak, to quantify the contribution of asymptomatic infections to transmission. The model estimated that 74% (70-78%, 95% posterior interval) of infections proceeded asymptomatically. Despite intense testing, 53% (51-56%) of infections remained undetected, most of them asymptomatic. Asymptomatic individuals were the source for 69% (20-85%) of all infections. The data did not allow identification of the infectiousness of asymptomatic infections, however low ranges (0-25%) required a net reproduction number for individuals progressing through presymptomatic and symptomatic stages of at least 15. Asymptomatic SARS-CoV-2 infections may contribute substantially to transmission. Control measures, and models projecting their potential impact, need to look beyond the symptomatic cases if they are to understand and address ongoing transmission.

Article and author information

Author details

  1. Jon C Emery

    Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy W Russell

    Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Yang Liu

    Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Joel Hellewell

    Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Carl AB Pearson

    Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. CMMID COVID-19 Working Group

  7. Gwenan M Knight

    IDE, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7263-9896
  8. Rosalind M Eggo

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Adam J Kucharski

    Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8814-9421
  10. Sebastian Funk

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2842-3406
  11. Stefan Flasche

    Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Rein M G J Houben

    Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
    For correspondence
    rein.houben@lshtm.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4132-7467

Funding

European Research Council Starting Grant (Action Number 757699)

  • Jon C Emery
  • Rein M G J Houben

Wellcome (206250/Z/17/Z)

  • Timothy W Russell
  • Adam J Kucharski

Wellcome (208812/Z/17/Z)

  • Stefan Flasche

Wellcome (210758/Z/18/Z)

  • Joel Hellewell
  • Sebastian Funk

Bill and Melinda Gates Foundation (INV-003174)

  • Yang Liu

Bill and Melinda Gates Foundation (NTD Modelling Consortium OPP1184344)

  • Carl AB Pearson

DFID/Wellcome Trust (Epidemic Preparedness Coronavirus research programme 221303/Z/20/Z)

  • Carl AB Pearson

European Union Horizon 2020 (project EpiPose (101003688))

  • Yang Liu

HDR UK (MR/S003975/1)

  • Rosalind M Eggo

National Institute for Health Research (16/137/109)

  • Yang Liu

Medical Research Council (MC_PC 19065)

  • Rosalind M Eggo

Medical Research Council (MR/P014658/1)

  • Gwenan M Knight

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marc Lipsitch, Harvard TH Chan School of Public Health, United States

Publication history

  1. Received: May 8, 2020
  2. Accepted: August 23, 2020
  3. Accepted Manuscript published: August 24, 2020 (version 1)

Copyright

© 2020, Emery et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,578
    Page views
  • 326
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Jacob A Tennessen et al.
    Short Report Updated

    Schistosomiasis is a debilitating parasitic disease infecting hundreds of millions of people. Schistosomes use aquatic snails as intermediate hosts. A promising avenue for disease control involves leveraging innate host mechanisms to reduce snail vectorial capacity. In a genome-wide association study of Biomphalaria glabrata snails, we identify genomic region PTC2 which exhibits the largest known correlation with susceptibility to parasite infection (>15 fold effect). Using new genome assemblies with substantially higher contiguity than the Biomphalaria reference genome, we show that PTC2 haplotypes are exceptionally divergent in structure and sequence. This variation includes multi-kilobase indels containing entire genes, and orthologs for which most amino acid residues are polymorphic. RNA-Seq annotation reveals that most of these genes encode single-pass transmembrane proteins, as seen in another resistance region in the same species. Such groups of hyperdiverse snail proteins may mediate host-parasite interaction at the cell surface, offering promising targets for blocking the transmission of schistosomiasis.

    1. Ecology
    2. Epidemiology and Global Health
    Marta S Shocket et al.
    Research Article

    The temperature-dependence of many important mosquito-borne diseases has never been quantified. These relationships are critical for understanding current distributions and predicting future shifts from climate change. We used trait-based models to characterize temperature-dependent transmission of 10 vector–pathogen pairs of mosquitoes (Culex pipiens, Cx. quinquefascsiatus, Cx. tarsalis, and others) and viruses (West Nile, Eastern and Western Equine Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with substantial transmission in temperate regions. Transmission is optimized at intermediate temperatures (23–26°C) and often has wider thermal breadths (due to cooler lower thermal limits) compared to pathogens with predominately tropical distributions (in previous studies). The incidence of human West Nile virus cases across US counties responded unimodally to average summer temperature and peaked at 24°C, matching model-predicted optima (24–25°C). Climate warming will likely shift transmission of these diseases, increasing it in cooler locations while decreasing it in warmer locations.