Rdh54/Tid1 inhibits Rad51-Rad54-mediated D-loop formation and limits D-loop length

  1. Shanaya Shital Shah
  2. Stella R Hartono
  3. Aurèle Piazza
  4. Vanessa C Som
  5. William Wright
  6. Frédéric Chédin
  7. Wolf-Dietrich Heyer  Is a corresponding author
  1. University of California, Davis, United States
  2. ENS Lyon, France

Abstract

Displacement loops (D-loops) are critical intermediates formed during homologous recombination. Rdh54 (a.k.a. Tid1), a Rad54 paralog in Saccharomyces cerevisiae, is well-known for its role with Dmc1 recombinase during meiotic recombination. Yet contrary to Dmc1, Rdh54/Tid1 is also present in somatic cells where its function is less understood. While Rdh54/Tid1 enhances the Rad51 DNA strand invasion activity in vitro, it is unclear how it interplays with Rad54. Here, we show that Rdh54/Tid1 inhibits D-loop formation by Rad51 and Rad54 in an ATPase-independent manner. Using a novel D-loop Mapping Assay, we further demonstrate that Rdh54/Tid1 uniquely restricts the lengths of Rad51-Rad54-mediated D-loops. The alterations in D-loop properties appear to be important for cell survival and mating-type switch in haploid yeast. We propose that Rdh54/Tid1 and Rad54 compete for potential binding sites within the Rad51 filament, where Rdh54/Tid1 acts as a physical roadblock to Rad54 translocation, limiting D-loop formation and D-loop length.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all numerical data.

Article and author information

Author details

  1. Shanaya Shital Shah

    Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  2. Stella R Hartono

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  3. Aurèle Piazza

    ENS Lyon, Lyon, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7722-0955
  4. Vanessa C Som

    Microbiology and Molecular Genetics, University of California, Davis, Belmont, United States
    Competing interests
    No competing interests declared.
  5. William Wright

    Microbiology & Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  6. Frédéric Chédin

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  7. Wolf-Dietrich Heyer

    Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    For correspondence
    wdHeyer@ucdavis.edu
    Competing interests
    Wolf-Dietrich Heyer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7774-1953

Funding

National Institutes of Health (GM 58015)

  • Wolf-Dietrich Heyer

National Institutes of Health (CA 92276)

  • Wolf-Dietrich Heyer

National Institutes of Health (CA 93373)

  • Wolf-Dietrich Heyer

National Institutes of Health (GM 120607)

  • Frédéric Chédin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maria Spies, University of Iowa, United States

Publication history

  1. Received: May 20, 2020
  2. Accepted: November 12, 2020
  3. Accepted Manuscript published: November 13, 2020 (version 1)
  4. Version of Record published: November 27, 2020 (version 2)

Copyright

© 2020, Shah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,093
    Page views
  • 169
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shanaya Shital Shah
  2. Stella R Hartono
  3. Aurèle Piazza
  4. Vanessa C Som
  5. William Wright
  6. Frédéric Chédin
  7. Wolf-Dietrich Heyer
(2020)
Rdh54/Tid1 inhibits Rad51-Rad54-mediated D-loop formation and limits D-loop length
eLife 9:e59112.
https://doi.org/10.7554/eLife.59112

Further reading

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Myeongjune Jeon, Goowon Jeong ... Ilha Lee
    Research Article Updated

    To synchronize flowering time with spring, many plants undergo vernalization, a floral-promotion process triggered by exposure to long-term winter cold. In Arabidopsis thaliana, this is achieved through cold-mediated epigenetic silencing of the floral repressor, FLOWERING LOCUS C (FLC). COOLAIR, a cold-induced antisense RNA transcribed from the FLC locus, has been proposed to facilitate FLC silencing. Here, we show that C-repeat (CRT)/dehydration-responsive elements (DREs) at the 3′-end of FLC and CRT/DRE-binding factors (CBFs) are required for cold-mediated expression of COOLAIR. CBFs bind to CRT/DREs at the 3′-end of FLC, both in vitro and in vivo, and CBF levels increase gradually during vernalization. Cold-induced COOLAIR expression is severely impaired in cbfs mutants in which all CBF genes are knocked-out. Conversely, CBF-overexpressing plants show increased COOLAIR levels even at warm temperatures. We show that COOLAIR is induced by CBFs during early stages of vernalization but COOLAIR levels decrease in later phases as FLC chromatin transitions to an inactive state to which CBFs can no longer bind. We also demonstrate that cbfs and FLCΔCOOLAIR mutants exhibit a normal vernalization response despite their inability to activate COOLAIR expression during cold, revealing that COOLAIR is not required for the vernalization process.

    1. Chromosomes and Gene Expression
    Qiming Yang, Te-Wen Lo ... Barbara J Meyer
    Research Article

    An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species C. briggsae (Cbr) and C. elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13-bp MEX and 30-bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.