Rdh54/Tid1 inhibits Rad51-Rad54-mediated D-loop formation and limits D-loop length

Abstract

Displacement loops (D-loops) are critical intermediates formed during homologous recombination. Rdh54 (a.k.a. Tid1), a Rad54 paralog in Saccharomyces cerevisiae, is well-known for its role with Dmc1 recombinase during meiotic recombination. Yet contrary to Dmc1, Rdh54/Tid1 is also present in somatic cells where its function is less understood. While Rdh54/Tid1 enhances the Rad51 DNA strand invasion activity in vitro, it is unclear how it interplays with Rad54. Here, we show that Rdh54/Tid1 inhibits D-loop formation by Rad51 and Rad54 in an ATPase-independent manner. Using a novel D-loop Mapping Assay, we further demonstrate that Rdh54/Tid1 uniquely restricts the lengths of Rad51-Rad54-mediated D-loops. The alterations in D-loop properties appear to be important for cell survival and mating-type switch in haploid yeast. We propose that Rdh54/Tid1 and Rad54 compete for potential binding sites within the Rad51 filament, where Rdh54/Tid1 acts as a physical roadblock to Rad54 translocation, limiting D-loop formation and D-loop length.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all numerical data.

Article and author information

Author details

  1. Shanaya Shital Shah

    Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  2. Stella R Hartono

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  3. Aurèle Piazza

    ENS Lyon, Lyon, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7722-0955
  4. Vanessa C Som

    Microbiology and Molecular Genetics, University of California, Davis, Belmont, United States
    Competing interests
    No competing interests declared.
  5. William Wright

    Microbiology & Molecular Genetics, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  6. Frédéric Chédin

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  7. Wolf-Dietrich Heyer

    Microbiology and Molecular Genetics, University of California, Davis, Davis, United States
    For correspondence
    wdHeyer@ucdavis.edu
    Competing interests
    Wolf-Dietrich Heyer, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7774-1953

Funding

National Institutes of Health (GM 58015)

  • Wolf-Dietrich Heyer

National Institutes of Health (CA 92276)

  • Wolf-Dietrich Heyer

National Institutes of Health (CA 93373)

  • Wolf-Dietrich Heyer

National Institutes of Health (GM 120607)

  • Frédéric Chédin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maria Spies, University of Iowa, United States

Version history

  1. Received: May 20, 2020
  2. Accepted: November 12, 2020
  3. Accepted Manuscript published: November 13, 2020 (version 1)
  4. Version of Record published: November 27, 2020 (version 2)

Copyright

© 2020, Shah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,263
    Page views
  • 189
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shanaya Shital Shah
  2. Stella R Hartono
  3. Aurèle Piazza
  4. Vanessa C Som
  5. William Wright
  6. Frédéric Chédin
  7. Wolf-Dietrich Heyer
(2020)
Rdh54/Tid1 inhibits Rad51-Rad54-mediated D-loop formation and limits D-loop length
eLife 9:e59112.
https://doi.org/10.7554/eLife.59112

Share this article

https://doi.org/10.7554/eLife.59112

Further reading

    1. Chromosomes and Gene Expression
    Elçin Ünal, Amanda J Su, Siri C Yendluri
    Research Article

    The mitosis to meiosis transition requires dynamic changes in gene expression, but whether and how the mitotic transcriptional machinery is regulated during this transition is unknown. In budding yeast, SBF and MBF transcription factors initiate the mitotic gene expression program. Here, we report two mechanisms that work together to restrict SBF activity during meiotic entry: repression of the SBF-specific Swi4 subunit through LUTI-based regulation and inhibition of SBF by Whi5, a functional homolog of the Rb tumor suppressor. We find that untimely SBF activation causes downregulation of early meiotic genes and delays meiotic entry. These defects are largely driven by the SBF-target G1 cyclins, which block the interaction between the central meiotic regulator Ime1 and its cofactor Ume6. Our study provides insight into the role of SWI4LUTI in establishing the meiotic transcriptional program and demonstrates how the LUTI-based regulation is integrated into a larger regulatory network to ensure timely SBF activity.

    1. Chromosomes and Gene Expression
    Rachel A Johnston, Katherine A Aracena ... Jenny Tung
    Research Advance

    Previously, we showed that a massively parallel reporter assay, mSTARR-seq, could be used to simultaneously test for both enhancer-like activity and DNA methylation-dependent enhancer activity for millions of loci in a single experiment (Lea et al., 2018). Here, we apply mSTARR-seq to query nearly the entire human genome, including almost all CpG sites profiled either on the commonly used Illumina Infinium MethylationEPIC array or via reduced representation bisulfite sequencing. We show that fragments containing these sites are enriched for regulatory capacity, and that methylation-dependent regulatory activity is in turn sensitive to the cellular environment. In particular, regulatory responses to interferon alpha (IFNA) stimulation are strongly attenuated by methyl marks, indicating widespread DNA methylation-environment interactions. In agreement, methylation-dependent responses to IFNA identified via mSTARR-seq predict methylation-dependent transcriptional responses to challenge with influenza virus in human macrophages. Our observations support the idea that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures—one of the tenets of biological embedding. However, we also find that, on average, sites previously associated with early life adversity are not more likely to functionally influence gene regulation than expected by chance.