1. Evolutionary Biology
  2. Microbiology and Infectious Disease
Download icon

Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic

  1. Chase W Nelson  Is a corresponding author
  2. Zachary Ardern  Is a corresponding author
  3. Tony L Goldberg
  4. Chen Meng
  5. Chen-Hao Kuo
  6. Christina Ludwig
  7. Sergios-Orestis Kolokotronis
  8. Xinzhu Wei  Is a corresponding author
  1. Academia Sinica, Taiwan
  2. Technical University of Munich, Germany
  3. University of Wisconsin-Madison, United States
  4. American Museum of Natural History, United States
  5. University of California, Berkeley, United States
Research Article
  • Cited 0
  • Views 646
  • Annotations
Cite this article as: eLife 2020;9:e59633 doi: 10.7554/eLife.59633

Abstract

Understanding the emergence of novel viruses requires an accurate and comprehensive annotation of their genomes. Overlapping genes (OLGs) are common in viruses and have been associated with pandemics, but are still widely overlooked. We identify and characterize ORF3d, a novel OLG in SARS-CoV-2 that is also present in Guangxi pangolin-CoVs but not other closely related pangolin-CoVs or bat-CoVs. We then document evidence of ORF3d translation, characterize its protein sequence, and conduct an evolutionary analysis at three levels: between taxa (21 members of Severe acute respiratory syndrome-related coronavirus), between human hosts (3978 SARS-CoV-2 consensus sequences), and within human hosts (401 deeply sequenced SARS-CoV-2 samples). ORF3d has been independently identified and shown to elicit a strong antibody response in COVID-19 patients. However, it has been misclassified as the unrelated gene ORF3b, leading to confusion. Our results liken ORF3d to other accessory genes in emerging viruses and highlight the importance of OLGs.

Article and author information

Author details

  1. Chase W Nelson

    Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
    For correspondence
    cwnelson88@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6287-1598
  2. Zachary Ardern

    Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
    For correspondence
    zachary.ardern@tum.de
    Competing interests
    The authors declare that no competing interests exist.
  3. Tony L Goldberg

    University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chen Meng

    Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Chen-Hao Kuo

    Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  6. Christina Ludwig

    Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6131-7322
  7. Sergios-Orestis Kolokotronis

    Institute for Comparative Genomics, American Museum of Natural History, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3309-8465
  8. Xinzhu Wei

    Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, United States
    For correspondence
    aprilwei@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

Academia Sinica (Postdoctoral Research Fellowship)

  • Chase W Nelson

National Philanthropic Trust (Grant)

  • Zachary Ardern

University of Wisconsin-Madison (John D. MacArthur Professorship Chair)

  • Tony L Goldberg

National Science Foundation (IOS grants #1755370 and #1758800)

  • Sergios-Orestis Kolokotronis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antonis Rokas, Vanderbilt University, United States

Publication history

  1. Received: June 3, 2020
  2. Accepted: September 30, 2020
  3. Accepted Manuscript published: October 1, 2020 (version 1)

Copyright

© 2020, Nelson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 646
    Page views
  • 147
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Evolutionary Biology
    Gökçe B Ayan et al.
    Research Article

    Organisms differ in the types and numbers of tRNA genes that they carry. While the evolutionary mechanisms behind tRNA gene set evolution have been investigated theoretically and computationally, direct observations of tRNA gene set evolution remain rare. Here, we report the evolution of a tRNA gene set in laboratory populations of the bacterium Pseudomonas fluorescens SBW25. The growth defect caused by deleting the single-copy tRNA gene, serCGA, is rapidly compensated by large-scale (45-290 kb) duplications in the chromosome. Each duplication encompasses a second, compensatory tRNA gene (serTGA) and is associated with a rise in tRNA‑Ser(UGA) in the mature tRNA pool. We postulate that tRNA‑Ser(CGA) elimination increases the translational demand for tRNA‑Ser(UGA), a pressure relieved by increasing serTGA copy number. This work demonstrates that tRNA gene sets can evolve through duplication of existing tRNA genes, a phenomenon that may contribute to the presence of multiple, identical tRNA gene copies within genomes.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Tom Hill, Robert L Unckless
    Research Article

    Hosts and viruses are constantly evolving in response to each other: as a host attempts to suppress a virus, the virus attempts to evade and suppress the host's immune system. Here we describe the recurrent evolution of a virulent strain of a DNA virus which infects multiple Drosophila species. Specifically, we identified two distinct viral types that differ 100-fold in viral titer in infected individuals, with similar differences observed in multiple species. Our analysis suggests that one of the viral types appears to have recurrently evolved at least 4 times in the past ~30,000 years, 3X in Arizona and once in another geographically distinct species. This recurrent evolution may be facilitated by an effective mutation rate which increases as each prior mutation increases viral titer and effective population size. The higher titer viral type suppresses the host immune system and an increased virulence compared to the low viral titer type.