1. Developmental Biology
  2. Stem Cells and Regenerative Medicine
Download icon

Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis

  1. Massimo Ganassi  Is a corresponding author
  2. Sara Badodi
  3. Kees Wanders
  4. Peter S Zammit
  5. Simon M Hughes  Is a corresponding author
  1. King's College London, United Kingdom
  2. Queen Mary University of London, United Kingdom
  3. Kings College London, United Kingdom
Research Article
  • Cited 0
  • Views 460
  • Annotations
Cite this article as: eLife 2020;9:e60445 doi: 10.7554/eLife.60445

Abstract

Growth and maintenance of skeletal muscle fibres depend on coordinated activation and return to quiescence of resident muscle stem cells (MuSCs). The transcription factor Myogenin (Myog) regulates myocyte fusion during development, but its role in adult myogenesis remains unclear. In contrast to mice, myog-/- zebrafish are viable, but have hypotrophic muscles. By isolating adult myofibres with associated MuSCs we found that myog-/- myofibres have severely reduced nuclear number, but increased myonuclear domain size. Expression of fusogenic genes is decreased, Pax7 upregulated, MuSCs are fivefold more numerous and mis-positioned throughout the length of myog-/- myofibres instead of localising at myofibre ends as in wild-type. Loss of Myog dysregulates mTORC1 signalling, resulting in an 'alerted' state of MuSCs, which display precocious activation and faster cell cycle entry ex vivo, concomitant with myod upregulation. Thus, beyond controlling myocyte fusion, Myog influences the MuSC:niche relationship, demonstrating a multi-level contribution to muscle homeostasis throughout life.

Article and author information

Author details

  1. Massimo Ganassi

    Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
    For correspondence
    massimo.ganassi@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara Badodi

    Blizard Institute, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Kees Wanders

    Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3209-9853
  4. Peter S Zammit

    Randall Centre for Cell and Molecular Biophysics, Kings College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9562-3072
  5. Simon M Hughes

    Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
    For correspondence
    simon.hughes@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8227-9225

Funding

Medical Research Council (G1001029)

  • Simon M Hughes

Medical Research Council (MR/N021231/1)

  • Simon M Hughes

Medical Research Council (MR/P023215/1)

  • Peter S Zammit

Medical Research Council (MR/S002472/1)

  • Peter S Zammit

Muscular Dystrophy UK (RA3/3052)

  • Peter S Zammit

Association Francaise contre les Myopathies (AFM17865)

  • Peter S Zammit

FSH Society (FSHS-82013-06)

  • Peter S Zammit

FSH Society (FSHS-82017-05)

  • Peter S Zammit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed on zebrafish derived from F2 or later filial generation, in accordance with licence held under the UK Animals (Scientific Procedures) Act 1986 and later modifications and conforming to all relevant guidelines and regulations.

Reviewing Editor

  1. Andrea Munsterberg, University of East Anglia, United Kingdom

Publication history

  1. Received: June 26, 2020
  2. Accepted: September 30, 2020
  3. Accepted Manuscript published: October 1, 2020 (version 1)

Copyright

© 2020, Ganassi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 460
    Page views
  • 134
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Graham Rykiel et al.
    Tools and Resources

    Cardiac pumping depends on the morphological structure of the heart, but also on its sub-cellular (ultrastructural) architecture, which enables cardiac contraction. In cases of congenital heart defects, localized ultrastructural disruptions that increase the risk of heart failure are only starting to be discovered. This is in part due to a lack of technologies that can image the three dimensional (3D) heart structure, to assess malformations; and its ultrastructure, to assess organelle disruptions. We present here a multiscale, correlative imaging procedure that achieves high-resolution images of the whole heart, using 3D micro-computed tomography (micro-CT); and its ultrastructure, using 3D scanning electron microscopy (SEM). In a small animal model (chicken embryo), we achieved uniform fixation and staining of the whole heart, without losing ultrastructural preservation on the same sample, enabling correlative multiscale imaging. Our approach enables multiscale studies in models of congenital heart disease and beyond.

    1. Developmental Biology
    Christian SM Helker et al.
    Research Article Updated

    To form new blood vessels (angiogenesis), endothelial cells (ECs) must be activated and acquire highly migratory and proliferative phenotypes. However, the molecular mechanisms that govern these processes are incompletely understood. Here, we show that Apelin signaling functions to drive ECs into such an angiogenic state. Zebrafish lacking Apelin signaling exhibit defects in endothelial tip cell morphology and sprouting. Using transplantation experiments, we find that in mosaic vessels, wild-type ECs leave the dorsal aorta (DA) and form new vessels while neighboring ECs defective in Apelin signaling remain in the DA. Mechanistically, Apelin signaling enhances glycolytic activity in ECs at least in part by increasing levels of the growth-promoting transcription factor c-Myc. Moreover, APELIN expression is regulated by Notch signaling in human ECs, and its function is required for the hypersprouting phenotype in Delta-like 4 (Dll4) knockdown zebrafish embryos. These data provide new insights into fundamental principles of blood vessel formation and Apelin signaling, enabling a better understanding of vascular growth in health and disease.