In vitro proteasome processing of neo-splicetopes does not predict their presentation in vivo

  1. Gerald Willimsky  Is a corresponding author
  2. Christin Beier
  3. Lena Immisch
  4. Georgios Papafotiou
  5. Vivian Scheuplein
  6. Andrean Goede
  7. Hermann-Georg Holzhütter
  8. Thomas Blankenstein
  9. Peter M Kloetzel  Is a corresponding author
  1. Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ Heidelberg), Germany
  2. Institute of Biochemistry (Charité - Universitätsmedizin Berlin), Germany
  3. Max-Delbrück Center for Molecular Medicine, Germany
  4. Institut für Physiologie (Charité - Universitätsmedizin Berlin), Germany
  5. Max Delbrück Center for Molecular Medicine in Helmholtz Association, Germany
  6. Charité - Universitätsmedizin Berlin, Germany

Abstract

Proteasome catalyzed peptide splicing (PCPS) of cancer-driving antigens could generate attractive neoepitopes to be targeted by TCR-based adoptive T cell therapy. Based on a spliced peptide prediction algorithm TCRs were generated against putative KRASG12V and RAC2P29L derived neo-splicetopes with high HLA-A*02:01 binding affinity. TCRs generated in mice with a diverse human TCR repertoire specifically recognized the respective target peptides with high efficacy. However, we failed to detect any neo-splicetope specific T cell response when testing the in vivo neo-splicetope generation and obtained no experimental evidence that the putative KRASG12V- and RAC2P29L-derived neo-splicetopes were naturally processed and presented. Furthermore, only the putative RAC2P29L-derived neo-splicetopes was generated by in vitro PCPS. The experiments pose severe questions on the notion that available algorithms or the in vitro PCPS reaction reliably simulate in vivo splicing and argue against the general applicability of an algorithm-driven 'reverse immunology' pipeline for the identification of cancer-specific neo-splicetopes.

Data availability

Additional source data comprising databases for ProteomDiscoverer, Kras/RAC2 kinetics, cleavage maps and PD2.1 result files have been submitted to Dryad under DOI:10.5061/dryad.jq2bvq88b

The following data sets were generated

Article and author information

Author details

  1. Gerald Willimsky

    Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ Heidelberg), Berlin, Germany
    For correspondence
    gerald.willimsky@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9693-948X
  2. Christin Beier

    Biochemistry, Institute of Biochemistry (Charité - Universitätsmedizin Berlin), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Lena Immisch

    Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ Heidelberg), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Georgios Papafotiou

    Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ Heidelberg), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Vivian Scheuplein

    Molecular Immunology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrean Goede

    Physiologie (, Institut für Physiologie (Charité - Universitätsmedizin Berlin), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9044-9869
  7. Hermann-Georg Holzhütter

    Biochemistry, Institute of Biochemistry (Charité - Universitätsmedizin Berlin), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Blankenstein

    Max Delbrück Center for Molecular Medicine in Helmholtz Association, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter M Kloetzel

    Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    p-m.kloetzel@charite.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (SFB-TR36)

  • Gerald Willimsky
  • Thomas Blankenstein

Deutsche Krebshilfe (111546)

  • Gerald Willimsky

Berlin Institute of Health (CRG-1)

  • Thomas Blankenstein
  • Peter M Kloetzel

DKTK joint funding (NEO-ATT)

  • Gerald Willimsky

Berliner Krebsgesellschaft

  • Peter M Kloetzel

Helmholtz-Gemeinschaft, Zukunftsthema 'Immunology and Inflammation'

  • Gerald Willimsky
  • Thomas Blankenstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to institutional and national guidelines and regulations. The experiments were approved by the governmental authority (Landesamt für Gesundheit und Soziales, Berlin, H0086/16).

Copyright

© 2021, Willimsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,003
    views
  • 276
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gerald Willimsky
  2. Christin Beier
  3. Lena Immisch
  4. Georgios Papafotiou
  5. Vivian Scheuplein
  6. Andrean Goede
  7. Hermann-Georg Holzhütter
  8. Thomas Blankenstein
  9. Peter M Kloetzel
(2021)
In vitro proteasome processing of neo-splicetopes does not predict their presentation in vivo
eLife 10:e62019.
https://doi.org/10.7554/eLife.62019

Share this article

https://doi.org/10.7554/eLife.62019

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yamato Niitani, Kohei Matsuzaki ... Michio Tomishige
    Research Article

    The two identical motor domains (heads) of dimeric kinesin-1 move in a hand-over-hand process along a microtubule, coordinating their ATPase cycles such that each ATP hydrolysis is tightly coupled to a step and enabling the motor to take many steps without dissociating. The neck linker, a structural element that connects the two heads, has been shown to be essential for head–head coordination; however, which kinetic step(s) in the chemomechanical cycle is ‘gated’ by the neck linker remains unresolved. Here, we employed pre-steady-state kinetics and single-molecule assays to investigate how the neck-linker conformation affects kinesin’s motility cycle. We show that the backward-pointing configuration of the neck linker in the front kinesin head confers higher affinity for microtubule, but does not change ATP binding and dissociation rates. In contrast, the forward-pointing configuration of the neck linker in the rear kinesin head decreases the ATP dissociation rate but has little effect on microtubule dissociation. In combination, these conformation-specific effects of the neck linker favor ATP hydrolysis and dissociation of the rear head prior to microtubule detachment of the front head, thereby providing a kinetic explanation for the coordinated walking mechanism of dimeric kinesin.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.