In vitro proteasome processing of neo-splicetopes does not predict their presentation in vivo

  1. Gerald Willimsky  Is a corresponding author
  2. Christin Beier
  3. Lena Immisch
  4. Georgios Papafotiou
  5. Vivian Scheuplein
  6. Andrean Goede
  7. Hermann-Georg Holzhütter
  8. Thomas Blankenstein
  9. Peter M Kloetzel  Is a corresponding author
  1. Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ Heidelberg), Germany
  2. Institute of Biochemistry (Charité - Universitätsmedizin Berlin), Germany
  3. Max-Delbrück Center for Molecular Medicine, Germany
  4. Institut für Physiologie (Charité - Universitätsmedizin Berlin), Germany
  5. Max Delbrück Center for Molecular Medicine in Helmholtz Association, Germany
  6. Charité - Universitätsmedizin Berlin, Germany

Abstract

Proteasome catalyzed peptide splicing (PCPS) of cancer-driving antigens could generate attractive neoepitopes to be targeted by TCR-based adoptive T cell therapy. Based on a spliced peptide prediction algorithm TCRs were generated against putative KRASG12V and RAC2P29L derived neo-splicetopes with high HLA-A*02:01 binding affinity. TCRs generated in mice with a diverse human TCR repertoire specifically recognized the respective target peptides with high efficacy. However, we failed to detect any neo-splicetope specific T cell response when testing the in vivo neo-splicetope generation and obtained no experimental evidence that the putative KRASG12V- and RAC2P29L-derived neo-splicetopes were naturally processed and presented. Furthermore, only the putative RAC2P29L-derived neo-splicetopes was generated by in vitro PCPS. The experiments pose severe questions on the notion that available algorithms or the in vitro PCPS reaction reliably simulate in vivo splicing and argue against the general applicability of an algorithm-driven 'reverse immunology' pipeline for the identification of cancer-specific neo-splicetopes.

Data availability

Additional source data comprising databases for ProteomDiscoverer, Kras/RAC2 kinetics, cleavage maps and PD2.1 result files have been submitted to Dryad under DOI:10.5061/dryad.jq2bvq88b

The following data sets were generated

Article and author information

Author details

  1. Gerald Willimsky

    Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ Heidelberg), Berlin, Germany
    For correspondence
    gerald.willimsky@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9693-948X
  2. Christin Beier

    Biochemistry, Institute of Biochemistry (Charité - Universitätsmedizin Berlin), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Lena Immisch

    Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ Heidelberg), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Georgios Papafotiou

    Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ Heidelberg), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Vivian Scheuplein

    Molecular Immunology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrean Goede

    Physiologie (, Institut für Physiologie (Charité - Universitätsmedizin Berlin), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9044-9869
  7. Hermann-Georg Holzhütter

    Biochemistry, Institute of Biochemistry (Charité - Universitätsmedizin Berlin), Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Blankenstein

    Max Delbrück Center for Molecular Medicine in Helmholtz Association, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Peter M Kloetzel

    Institut für Biochemie, Charité - Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    p-m.kloetzel@charite.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (SFB-TR36)

  • Gerald Willimsky
  • Thomas Blankenstein

Deutsche Krebshilfe (111546)

  • Gerald Willimsky

Berlin Institute of Health (CRG-1)

  • Thomas Blankenstein
  • Peter M Kloetzel

DKTK joint funding (NEO-ATT)

  • Gerald Willimsky

Berliner Krebsgesellschaft

  • Peter M Kloetzel

Helmholtz-Gemeinschaft, Zukunftsthema 'Immunology and Inflammation'

  • Gerald Willimsky
  • Thomas Blankenstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Vincenzo Cerullo, University of Helsinki, Finland

Ethics

Animal experimentation: All animal experiments were performed according to institutional and national guidelines and regulations. The experiments were approved by the governmental authority (Landesamt für Gesundheit und Soziales, Berlin, H0086/16).

Version history

  1. Received: August 11, 2020
  2. Accepted: April 15, 2021
  3. Accepted Manuscript published: April 20, 2021 (version 1)
  4. Accepted Manuscript updated: April 22, 2021 (version 2)
  5. Version of Record published: May 26, 2021 (version 3)

Copyright

© 2021, Willimsky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,868
    views
  • 260
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gerald Willimsky
  2. Christin Beier
  3. Lena Immisch
  4. Georgios Papafotiou
  5. Vivian Scheuplein
  6. Andrean Goede
  7. Hermann-Georg Holzhütter
  8. Thomas Blankenstein
  9. Peter M Kloetzel
(2021)
In vitro proteasome processing of neo-splicetopes does not predict their presentation in vivo
eLife 10:e62019.
https://doi.org/10.7554/eLife.62019

Share this article

https://doi.org/10.7554/eLife.62019

Further reading

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.