Abstract

Cell proliferation and quiescence are intimately coordinated during metazoan development. Here, we adapt a cyclin-dependent kinase (CDK) sensor to uncouple these key events of the cell cycle in C. elegans and zebrafish through live-cell imaging. The CDK sensor consists of a fluorescently tagged CDK substrate that steadily translocates from the nucleus to the cytoplasm in response to increasing CDK activity and consequent sensor phosphorylation. We show that the CDK sensor can distinguish cycling cells in G1 from quiescent cells in G0, revealing a possible commitment point and a cryptic stochasticity in an otherwise invariant C. elegans cell lineage. Finally, we derive a predictive model of future proliferation behavior in C. elegans based on a snapshot of CDK activity in newly born cells. Thus, we introduce a live-cell imaging tool to facilitate in vivo studies of cell cycle control in a wide-range of developmental contexts.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rebecca C Adikes

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Abraham Q Kohrman

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook University, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3726-1090
  3. Michael A Q Martinez

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1178-7139
  4. Nicholas J Palmisano

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jayson J Smith

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Taylor N Medwig-Kinney

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7989-3291
  7. Mingwei Min

    Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9050-5330
  8. Maria Danielle Sallee

    Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ononnah B Ahmed

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nuri Kim

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Simeiyun Liu

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Robert D Morabito

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Nicholas Weeks

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Qinyun Zhao

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Wan Zhang

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jessica L Feldman

    Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5210-5045
  17. Michalis Barkoulas

    Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1974-7668
  18. Ariel M Pani

    University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Sabrina Leigh Spencer

    Biochemistry, University of Colorado-Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5798-3007
  20. Benjamin Louis Martin

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5474-4492
  21. David Q Matus

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    For correspondence
    david.matus@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1570-5025

Funding

National Institutes of Health (1R01GM121597)

  • David Q Matus

National Institutes of Health (DP2GM1191136)

  • Sabrina Leigh Spencer

National Institutes of Health (DP2-CA238330)

  • Jessica L Feldman

American Cancer Society (RSG-18-008-01)

  • Sabrina Leigh Spencer

Pew Charitable Trusts

  • Sabrina Leigh Spencer

Boettcher Foundation

  • Sabrina Leigh Spencer

Searle Scholars Program (SSP-2016-1533)

  • Sabrina Leigh Spencer

National Institutes of Health (1K99GM13548901)

  • Maria Danielle Sallee

National Institutes of Health (1R01GM124282)

  • Benjamin Louis Martin

Damon Runyon Cancer Research Foundation (DRR-47-17)

  • Benjamin Louis Martin
  • David Q Matus

National Science Foundation (IOS 1452928)

  • Benjamin Louis Martin

Pershing Square Sohn Cancer Research Alliance

  • Benjamin Louis Martin

National Institutes of Health (1F32133131)

  • Rebecca C Adikes

National Institutes of Health (F31GM128319)

  • Abraham Q Kohrman

American Cancer Society (132969-PF-18-226-01-CSM)

  • Nicholas J Palmisano

National Institutes of Health (F31HD1000091)

  • Taylor N Medwig-Kinney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2012-1932 - R2 - 1.15.21- FI) of Stony Brook University. The protocol was approved by the Office of Research Compliance of Stony Brook University.

Copyright

© 2020, Adikes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,933
    views
  • 723
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca C Adikes
  2. Abraham Q Kohrman
  3. Michael A Q Martinez
  4. Nicholas J Palmisano
  5. Jayson J Smith
  6. Taylor N Medwig-Kinney
  7. Mingwei Min
  8. Maria Danielle Sallee
  9. Ononnah B Ahmed
  10. Nuri Kim
  11. Simeiyun Liu
  12. Robert D Morabito
  13. Nicholas Weeks
  14. Qinyun Zhao
  15. Wan Zhang
  16. Jessica L Feldman
  17. Michalis Barkoulas
  18. Ariel M Pani
  19. Sabrina Leigh Spencer
  20. Benjamin Louis Martin
  21. David Q Matus
(2020)
Visualizing the metazoan proliferation-quiescence decision in vivo
eLife 9:e63265.
https://doi.org/10.7554/eLife.63265

Share this article

https://doi.org/10.7554/eLife.63265

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.