Abstract

Cell proliferation and quiescence are intimately coordinated during metazoan development. Here, we adapt a cyclin-dependent kinase (CDK) sensor to uncouple these key events of the cell cycle in C. elegans and zebrafish through live-cell imaging. The CDK sensor consists of a fluorescently tagged CDK substrate that steadily translocates from the nucleus to the cytoplasm in response to increasing CDK activity and consequent sensor phosphorylation. We show that the CDK sensor can distinguish cycling cells in G1 from quiescent cells in G0, revealing a possible commitment point and a cryptic stochasticity in an otherwise invariant C. elegans cell lineage. Finally, we derive a predictive model of future proliferation behavior in C. elegans based on a snapshot of CDK activity in newly born cells. Thus, we introduce a live-cell imaging tool to facilitate in vivo studies of cell cycle control in a wide-range of developmental contexts.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Rebecca C Adikes

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Abraham Q Kohrman

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook University, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3726-1090
  3. Michael A Q Martinez

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1178-7139
  4. Nicholas J Palmisano

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jayson J Smith

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Taylor N Medwig-Kinney

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7989-3291
  7. Mingwei Min

    Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9050-5330
  8. Maria Danielle Sallee

    Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ononnah B Ahmed

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nuri Kim

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Simeiyun Liu

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Robert D Morabito

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Nicholas Weeks

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Qinyun Zhao

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Wan Zhang

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jessica L Feldman

    Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5210-5045
  17. Michalis Barkoulas

    Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1974-7668
  18. Ariel M Pani

    University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Sabrina Leigh Spencer

    Biochemistry, University of Colorado-Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5798-3007
  20. Benjamin Louis Martin

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5474-4492
  21. David Q Matus

    Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    For correspondence
    david.matus@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1570-5025

Funding

National Institutes of Health (1R01GM121597)

  • David Q Matus

National Institutes of Health (DP2GM1191136)

  • Sabrina Leigh Spencer

National Institutes of Health (DP2-CA238330)

  • Jessica L Feldman

American Cancer Society (RSG-18-008-01)

  • Sabrina Leigh Spencer

Pew Charitable Trusts

  • Sabrina Leigh Spencer

Boettcher Foundation

  • Sabrina Leigh Spencer

Searle Scholars Program (SSP-2016-1533)

  • Sabrina Leigh Spencer

National Institutes of Health (1K99GM13548901)

  • Maria Danielle Sallee

National Institutes of Health (1R01GM124282)

  • Benjamin Louis Martin

Damon Runyon Cancer Research Foundation (DRR-47-17)

  • Benjamin Louis Martin
  • David Q Matus

National Science Foundation (IOS 1452928)

  • Benjamin Louis Martin

Pershing Square Sohn Cancer Research Alliance

  • Benjamin Louis Martin

National Institutes of Health (1F32133131)

  • Rebecca C Adikes

National Institutes of Health (F31GM128319)

  • Abraham Q Kohrman

American Cancer Society (132969-PF-18-226-01-CSM)

  • Nicholas J Palmisano

National Institutes of Health (F31HD1000091)

  • Taylor N Medwig-Kinney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2012-1932 - R2 - 1.15.21- FI) of Stony Brook University. The protocol was approved by the Office of Research Compliance of Stony Brook University.

Copyright

© 2020, Adikes et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rebecca C Adikes
  2. Abraham Q Kohrman
  3. Michael A Q Martinez
  4. Nicholas J Palmisano
  5. Jayson J Smith
  6. Taylor N Medwig-Kinney
  7. Mingwei Min
  8. Maria Danielle Sallee
  9. Ononnah B Ahmed
  10. Nuri Kim
  11. Simeiyun Liu
  12. Robert D Morabito
  13. Nicholas Weeks
  14. Qinyun Zhao
  15. Wan Zhang
  16. Jessica L Feldman
  17. Michalis Barkoulas
  18. Ariel M Pani
  19. Sabrina Leigh Spencer
  20. Benjamin Louis Martin
  21. David Q Matus
(2020)
Visualizing the metazoan proliferation-quiescence decision in vivo
eLife 9:e63265.
https://doi.org/10.7554/eLife.63265

Share this article

https://doi.org/10.7554/eLife.63265

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.