The interplay between asymmetric and symmetric DNA loop extrusion

  1. Edward J Banigan  Is a corresponding author
  2. Leonid A Mirny  Is a corresponding author
  1. Massachusetts Institute of Technology, United States

Abstract

Chromosome compaction is essential for reliable transmission of genetic information. Experiments suggest that ~ 1000-fold compaction is driven by condensin complexes that extrude chromatin loops, i.e., progressively collect chromatin fiber from one or both sides of the complex to form a growing loop. Theory indicates that symmetric two-sided loop extrusion can achieve such compaction, but recent single-molecule studies (Golfier et al., 2020) observed diverse dynamics of condensins that perform one-sided, symmetric two-sided, and asymmetric two-sided extrusion. We use simulations and theory to determine how these molecular properties lead to chromosome compaction. High compaction can be achieved if even a small fraction of condensins have two essential properties: a long residence time and the ability to perform two-sided (not necessarily symmetric) extrusion. In mixtures of condensins I and II, coupling two-sided extrusion and stable chromatin binding by condensin II promotes compaction. These results provide missing connections between single-molecule observations and chromosome-scale organization.

Data availability

Software used to perform simulations is publicly and freely available at https://github.com/mirnylab/one_sided_extrusion/tree/master/mitotic. Data analyzed from single-molecule experiments was previously published as part of Golfier et al. eLife 9:e53885 (2020).

The following previously published data sets were used

Article and author information

Author details

  1. Edward J Banigan

    Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    ebanigan@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5478-7425
  2. Leonid A Mirny

    Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    lmirny@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0785-5410

Funding

National Institutes of Health (U54DK107980)

  • Edward J Banigan
  • Leonid A Mirny

National Institutes of Health (U54CA193419)

  • Edward J Banigan
  • Leonid A Mirny

National Institutes of Health (GM114190)

  • Edward J Banigan
  • Leonid A Mirny

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Banigan & Mirny

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,537
    views
  • 254
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edward J Banigan
  2. Leonid A Mirny
(2020)
The interplay between asymmetric and symmetric DNA loop extrusion
eLife 9:e63528.
https://doi.org/10.7554/eLife.63528

Share this article

https://doi.org/10.7554/eLife.63528