Genetic Engineering: Increasing the uptake of carbon dioxide
Look around: how many things do you see made of wood, cloth or plastic? These items may seem wildly different, but they all contain organic carbon and, therefore, they can only exist because plants, algae and certain bacteria are constantly using photosynthesis to turn sunlight, water and atmospheric carbon dioxide (CO2) into most of our food, furniture and fuel (Fischer et al., 2016). However, this process has gotten more difficult over time. Modern CO2 levels are less than 1% of what they were when photosynthetic organisms first evolved, making the work of Rubisco, the enzyme that converts CO2 into organic molecules, more difficult. In turn, the slow rate of CO2 uptake limits the growth of many plants, including crops such as rice and wheat (Long et al., 2006).
Some organisms, however, have evolved ways to concentrate CO2 around Rubisco, allowing the enzyme to run faster (Hennacy and Jonikas, 2020). Introducing such carbon-concentrating mechanisms into crops could increase yields by 60% while reducing water and fertilizer requirements (McGrath and Long, 2014). The best understood carbon-concentrating mechanism is the one found in bacteria, which is based on a protein structure called the ‘carboxysome’ that contains Rubisco and other carbon fixation-related enzymes. These species actively import carbon in the form of bicarbonate (HCO3–), which diffuses into the carboxysome and is converted to CO2. The resulting high CO2 concentration achieved within the carboxysome maximizes the activity of Rubisco and therefore increases overall CO2 uptake (Figure 1A).
Previous work managed to assemble carboxysome-like structures in the non-photosynthetic model bacterium Escherichia coli (Bonacci et al., 2012). However, these cells required high levels of CO2 for growth, indicating that additional components were required to concentrate CO2. Now, in eLife, David Savage, Ron Milo and colleagues – including Avi Flamholz as first author – report how they have engineered a functional carbon-concentrating mechanism into an organism that lacks one (Flamholz et al., 2020).
The team, which is based at the University of California, Berkeley, the Weizmann Institute of Science and the Max Planck Institute of Molecular Plant Physiology, chose the bacterium Halothiobacillus neapolitanus as the genetic donor for their experiment. Carboxysomes in this species are simple and well-studied: in particular, Savage and co-workers had previously identified 20 candidate genes likely needed for these structures to work properly (Desmarais et al., 2019).
As their recipient species, Flamholz et al. chose E. coli, which they genetically modified to rely on Rubisco’s activity for growth (Figure 1B). Without a carbon-concentrating mechanism, this strain could not grow in ambient air – it required supplementation with CO2 levels about 100 times higher than those found in the atmosphere. Hoping to reconstitute a functional carbon-concentrating mechanism, the team transferred the 20 candidate genes from H. neapolitanus to their E. coli strain. Unsurprisingly, the strain was still unable to grow in ambient CO2 at first, as simply adding genes is often not enough to engineer a complex pathway into a new organism (Antonovsky et al., 2016).
However, Flamholz et al. were able to leverage an important feature of their genetically engineered E. coli strain – its growth rate is proportional to Rubisco’s activity. This allowed the team to use a natural selection experiment to spot mutations that make the carbon-concentrating mechanism work, and therefore increase Rubisco activity. The experiment revealed a mutant that could grow at ambient CO2 levels, apparently by adjusting the expression levels of the proteins taking part in the carbon-concentrating process.
This result suggested that a carbon-concentrating mechanism based on H. neapolitanus carboxysomes had successfully been reconstituted in their E. coli strain (Figure 1C). To further support this conclusion, electron microscopy was used to observe the carboxysome-like structures within the engineered E. coli strain. To make sure these structures were functional, they individually knocked out several genes known to be essential for carboxysome function in the native host. These mutations had the same effect in E. coli as in H. neapolitanus – the cells no longer grew at ambient CO2 levels – confirming that the carboxysome was working the same way in the engineered strain as in the native host.
These results from Flamholz et al. indicate that a carboxysome-based carbon-concentrating mechanism can be transferred and function in another organism, providing a blueprint that paves the way toward engineering plants with increased CO2 uptake and thus greater yields.
References
-
DABs are inorganic carbon pumps found throughout prokaryotic phylaNature Microbiology 4:2204–2215.https://doi.org/10.1038/s41564-019-0520-8
-
Evolution of oxygenic photosynthesisAnnual Review of Earth and Planetary Sciences 44:647–683.https://doi.org/10.1146/annurev-earth-060313-054810
-
Prospects for engineering biophysical CO2 concentrating mechanisms into land plants to enhance yieldsAnnual Review of Plant Biology 71:461–485.https://doi.org/10.1146/annurev-arplant-081519-040100
-
Can improvement in photosynthesis increase crop yields?Plant, Cell and Environment 29:315–330.https://doi.org/10.1111/j.1365-3040.2005.01493.x
Article and author information
Author details
Publication history
Copyright
© 2020, Franklin and Jonikas
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,543
- views
-
- 193
- downloads
-
- 3
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.
-
- Biochemistry and Chemical Biology
- Cell Biology
Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.