SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site

Abstract

Coronavirus entry is mediated by the spike protein which binds the receptor and mediates fusion after cleavage by host proteases. The proteases that mediate entry differ between cell lines and it is currently unclear which proteases are relevant in vivo. A remarkable feature of the SARS-CoV-2 spike is the presence of a multibasic cleavage site (MBCS), which is absent in the SARS-CoV spike. Here, we report that the SARS-CoV-2 spike MBCS increases infectivity on human airway organoids (hAOs). Compared with SARS-CoV, SARS-CoV-2 entered faster into Calu-3 cells, and more frequently formed syncytia in hAOs. Moreover, the MBCS increased entry speed and plasma membrane serine protease usage relative to cathepsin-mediated endosomal entry. Blocking serine proteases, but not cathepsins, effectively inhibited SARS-CoV-2 entry and replication in hAOs. Our findings demonstrate that SARS-CoV-2 enters relevant airway cells using serine proteases, and suggest that the MBCS is an adaptation to this viral entry strategy.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Anna Z Mykytyn

    Viroscience, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7188-6871
  2. Tim I Breugem

    Viroscience, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Samra Riesebosch

    Viroscience, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Debby Schipper

    Viroscience, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Petra B van den Doel

    Viroscience, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Robbert J Rottier

    Pediatric Surgery/Cell Biology, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9291-4971
  7. Mart M Lamers

    Viroscience, Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1431-4022
  8. Bart L Haagmans

    Viroscience Department, Erasmus MC, Rotterdam, Netherlands
    For correspondence
    b.haagmans@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6221-2015

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (0.22.005.032)

  • Bart L Haagmans

ZonMw (10150062010008)

  • Bart L Haagmans

Health Holland (LSHM19136)

  • Bart L Haagmans

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mark Marsh, University Coillege London, United Kingdom

Publication history

  1. Received: October 31, 2020
  2. Accepted: December 31, 2020
  3. Accepted Manuscript published: January 4, 2021 (version 1)
  4. Version of Record published: January 13, 2021 (version 2)

Copyright

© 2021, Mykytyn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,899
    Page views
  • 621
    Downloads
  • 50
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Z Mykytyn
  2. Tim I Breugem
  3. Samra Riesebosch
  4. Debby Schipper
  5. Petra B van den Doel
  6. Robbert J Rottier
  7. Mart M Lamers
  8. Bart L Haagmans
(2021)
SARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site
eLife 10:e64508.
https://doi.org/10.7554/eLife.64508

Further reading

    1. Epidemiology and Global Health
    2. Medicine
    3. Microbiology and Infectious Disease
    Edited by Diane M Harper et al.
    Collection

    eLife has published the following articles on SARS-CoV-2 and COVID-19.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Carlos-Henrique D Barbosa et al.
    Research Article Updated

    Increasing attention has been directed to cytotoxic CD4+ T cells (CD4CTLs) in different pathologies, both in humans and mice. The impact of CD4CTLs in immunity and the mechanisms controlling their generation, however, remain poorly understood. Here, we show that CD4CTLs abundantly differentiate during mouse infection with the intracellular parasite Trypanosoma cruzi. CD4CTLs display parallel kinetics to Th1 cells in the spleen, mediate specific cytotoxicity against cells presenting pathogen-derived antigens and express immunoregulatory and/or exhaustion markers. We demonstrate that CD4CTL absolute numbers and activity are severely reduced in both Myd88-/- and Il18ra-/- mice. Of note, the infection of mixed-bone marrow chimeras revealed that wild-type (WT) but not Myd88-/- cells transcribe the CD4CTL gene signature and that Il18ra-/- and Myd88-/- CD4+ T cells phenocopy each other. Moreover, adoptive transfer of WT CD4+GzB+ T cells to infected Il18ra-/- mice extended their survival. Importantly, cells expressing the CD4CTL phenotype predominate among CD4+ T cells infiltrating the infected mouse cardiac tissue and are increased in the blood of Chagas patients, in which the frequency of CD4CTLs correlates with the severity of cardiomyopathy. Our findings describe CD4CTLs as a major player in immunity to a relevant human pathogen and disclose T-cell intrinsic IL-18R/MyD88 signaling as a key pathway controlling the magnitude of the CD4CTL response.